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ABSTRACT

We present a simple, deterministic energy-balance model with possible relevance to climatic variations
on the time scale of glaciation cycles. The lag between ice-sheet extent and zonally-averaged temperature
is modeled as a time delay in the ice-albedo feedback. The model exhibits self-sustained oscillations which
are quasi-periodic or aperiodic in character. Fourier spectra of solutions have the features of many paleo-
climatic records: peaks of variable height and width superimposed on a continuous, red-noise type back-

ground.

1. Introduction

The phenomena of glacial-interglacial fluctuations
have received the attention of geoscientists for a long
time (Imbrie and Imbrie, 1979). Until recently, ef-
forts toward understanding these fluctuations were
constrained by a variety of limitations; among them,
probably the most important one was the absence of
continuous, reliable climatic records of these fluc-
tuations. Recent studies on deep-sea sedimentation
cores (e.g., Hays et al., 1976) and ice cores from
Greenland (e.g., Dansgaard et al., 1971) have re-
generated interest in the earth’s glaciation history.
This interest has been accentuated by the increasing
preoccupation with the subject of terrestrial climate
changes on various time scales.

One widely held view has been that the earth’s
climate changes with time, due to variations in fac-
tors external to the climatic system, i.e., “external
conditions.” Among the various explanations that
fall into this class, the astronomical theory of glacial-
interglacial oscillations (Milankovitch, 1941, i.a.)
has attracted considerable attention. This theory
holds that quasi-periodic changes in the parameters
governing the earth’s orbit in the solar system induce
spatial and-temporal changes in the seasonal cycle
of solar radiation received at the earth’s surface.
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These changes, in turn, bring about the alternation
of glacial and interglacial climates. The variations
in insolation received at the earth’s surface can be
calculated from the relatively well-known pertur-
bations in the terrestrial orbit. Therefore, this hy-
pothesis can be studied in quantitative detail in re-
lation to the temperature and ice volume history ob-
served from the cores.

The astronomical insolation variations and the
proxy records of climatic variables have been found’
to be in partial agreement with each other (Hays et
al., 1976). The proven agreement. is mostly of an
indirect, circumstantial nature. It is necessary to pos-
tulate some nonlinearity in the climatic system to
explain the differences between the spectra of the
input and output functions. It appears that, among
the various physically reasonable possibilities, the
glaciers themselves can be a source of such nonlin-
earity (Birchfield and Weertman, 1978). Considering
the presently available evidence, the astronomical
hypothesis appears to explain a significant part of
the total climatic variability present over the time
scales of 10*-10° years.

The full spectrum of observed climatic variability
(e.g., Kutzbach and Bryson, 1974), over all time
scales, shows that the astronomical hypothesis ac-
counts at best for only three peaks in the spectrum:
at ~20 000, 40 000 and possibly 100 000 years. A
major part of the climatic variability is still to be
explained. Many other hypotheses have been offered
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to account for the continuous part of the variability
spectrum, as well as other peaks (Ghil, 1981b). In
particular, the study of high-sedimentation-rate cores
from the North Atlantic has documented a strong
peak in the 6'®0 proxy record, which correlates well
with global ice volume, close to 10 000 years, and
a smaller peak with the same location in sea-surface
temperature (Ruddiman and Mclntyre, 1981). Sim-
ilar results (Duplessy et al., 1981) have been ob-
tained on a possible peak in 8'®0 and sea-surface
temperature at 4000 years, and evidence exists for
a climatic variability peak at 2500 years. It has also
been proposed that anthropogenic sources can cause

changes in terrestrial climate on shorter time scales. -

In this work, the possible contribution of internal
causes to terrestrial climatic change for long time
scales is explored. Specifically, a one-dimensional
energy-balance model is used to investigate the role
of almost-intransitivity in earth’s climate change.
Lorenz (1970) noted that the different components
of the earth’s climatic system can. store and release
energy over widely different time scales. Nonlinear
interactions between these components can give rise,
therefore, to fluctuations in climatic variables on
some of these time scales. Such self-sustaining fluc-
tuations, in the absence of external changes, were
termed almost intransitive. In the present model, the
interacting components with different relaxation
times are the cryosphere and the hydrosphere. The
time scales of interest are 10°-10° years. The results,
however, could be indicative of the possibility and
‘relevance of almost-intransitive behavior for the cli-
matic system on other time scales.

In Section 2, the model is described. Section 3
discusses the model’s steady-state solutions and their
stability. Time-dependent solutions are studied in
Section 4, which gives our main results. Discussion
and conclusions follow in Section 5. Two Appendices
outline the numerical methods used in the compu-
tations, and the spectral analysis of model solutions.

2. The model

The model used in the present work is an energy-
balance model of the Sellers (1969) type. It is based
on the model of Ghil (1976), which will be called the
G model. The present model will be referred to as
the BG model. Other versions of the model appear
in Bhattacharya (1979), Bhattacharya and Ghil
(1978) and Ghil and Bhattacharya (1979). (In these
preliminary publications, the present model was
called Model 2a, while the G model was called Model
0.) To put our results in context, a brief description
of the G model is given first, after which the BG
model is described.

The G model (Ghil, 1976) is a zonally and ver-
tically averaged mean annual energy-balance model.
Sea-level temperature 7T is the only dependent vari-
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- able. The independent variables are time ¢ and a

scaled co-latitude x. Symmetry about the equator is
assumed. The governing equation, which is an equa-
tion for energy balance at the Earth’s surface, is of
the form

9T (x, t)

Clx) == = Rix, Tx, D] — RIT(x, )]

aT *T
+ Y ’_ ’ 7— Yy 9’
D[x t ™ (x, 1) P (x t)] (1a)

where x = 2¢/w, ¢ being the co-latitude. Thus, at
the pole, x = 0; at the equator, x = 1.

In Eq. (1a), C(x) is the zonally averaged heat ca-
pacity of the Earth; it is determined from existing
data. The absorbed part, R, of the incoming solar

-radiation is of the form .

R; = pQ(x){1 — alx, T(x, ]} (1b)

Here Q(x) is the meridional distribution of incident
solar radiation, while a is the albedo (reflectivity)
of the earth’s surface; p = 1 corresponds to present-
day radiation conditions, while u # 1 corresponds to
a change from such conditions. Thus u gives the frac-
tional change in the “solar constant.”

The outgoing infrared radiation R,, the part of
energy lost to space, is

R, = o[T(x, )]-o-[T(x, D], (1c)

where ¢ is the Stefan-Boltzmann constant and ¢ the
emissivity coefficient. -

The heat D transported along the earth’s surface
by conduction and convection is represented in the
model by a diffusive approximation

| aT T

D 5ing 39 [sing - k()] e ¢ 5 % (1d)

where k(o) is an eddy diffusivity that models both

atmospheric and oceanic sensible heat fluxes, as well

as atmospheric latent heat fluxes, in a manner to be
described later on. ,

This form of one-dimensional energy-balance
model, governed by Egs. (1a)-(1d), was first pro-
posed by Sellers (1969). The coefficients and forcing
terms in these equations are the annual averages of
the corresponding quantities.

The albedo in (1b) has the functional form

a={b(x) = ¢\[Ty + (T — c22(x) — T\n)-1}.. (2a)

The meaning of the subscripts ( )_ and { "}, is
given for a generic quantity A by

h- = min{h, 0}, , (2b)
0.25, h <025

ho=1{h  025<h<085 ()
0.85, 0.85 <.
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The cutoff implied in Eq. (2¢) arises from the fact
that snow and ice have the highest albedo (a = 0.85
on the average), whereas bare ground and water have
the lowest albedo (« = 0.25 on the average).

The most striking feature of Sellers-type models
is the piecewise linear dependence of albedo « on the
elevated ground temperature T — c¢,z(x). Albedo
decreases monotonically within the limiting temper-

atures set by the cut-off values of the albedo. Values .

- of these limiting temperatures depend on latitude due
to the latitude-dependence of b(x) and z(x) in (2a).
Eq. (2a) further states that when ground tempera-
ture is greater than T,, no snow or ice is present,
and the albedo is given by the bare-ground albedo.
The albedo as given by (2a) is planetary albedo,
from satellite observations (Sellers, 1969). Sellers
(1969) used the coeflicients b(x) to fit the meridional
distribution of observed albedo; therefore the value
of the albedo as given by (2a) is exact for the present
distribution of surface temperatures. Eq. (2a) at-
tempts to model the dependence of planetary albedo
on surface temperatures different from the present
ones. It includes, however, only the ice-albedo feed-
back, although several other albedo-feedback effects
(e.g., due to cloud, vegetation, etc.) are conceivable.
The emissivity coefficient ¢[7(x, ?)] in Eq. (1c)
was parameterized by Sellers (1969) as
¢ =1 — mtanh(c;T9). (2d)
This variable emissivity expresses empirically the
“greenhouse effect”; i.e., the process by which out-
going longwave radiation is partly screened by var-
ious atmospheric gaseous absorbers and clouds. The
expression (2d) indicates that as temperature in-
creases, ¢ decreases, i.e., the greenhouse effect be-
comes stronger.
The function k(¢) in Eq. (1d) has the form

k(o) = ki(¢) + ko)g(T),

&) = T3 exp( ¢s/T), (2e)
where T(x) is the present observed climate, from now
on called “data climate;” k,(¢)7T, is the combined
sensible heat flux in atmosphere and ocean; and
kx(¢)g(T)T, is the latent heat flux in the atmosphere
where k;(¢) and k,(¢) are eddy diffusivities. This
particular formulation of k represented by Eq. (2¢)
makes the diffusive approximation [Eq. (1d)] a linear
approximation; we shall not consider here nonlinear
formulations, k = k(¢, T, T,) (cf. Gal-Chen and
Schneider, 1976; here T, = dT/3,).

The functions C(x), @(x) and z(x) are determined
directly from observations of the corresponding phys-
ical quantities. Like function b(x), the constants ¢,
and ¢, were also determined by fitting the existing
planetary albedo data to Eq. (2a). The constants m
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and ¢; were computed by Sellers (1969) by fitting
data from current longwave radiation measurements
to formulas (1c) and (2d). The form of thé function
g(T) and the constants ¢4, ¢s appearing in (2e) are
based on the thermodynamics of wet air and on em-
pirical data (Berry et al., 1945). The functions k,(¢)
and k,(¢) are computed from measured data on sen-
sible and latent heat flux, k,(¢)T. » and k,(¢)g( T)T,,,,
respectively.

The values of C(x), Q(x), b(x), z(x), ki(x) and
k,(x) that were used for the G model are given in
Table 1. The values of the constants are:

¢ = 0.009, ¢, =0.0065K m™
c;=19X 107 K™
cs = 1.489 X 10° X 10 dyn K cm™?

(3)
¢s = 5350 K
o=1356X102calem?*s™' K™
m=20.5 T, =28316K )

Eq. (1a), together with relations (1b)-(1d) and (2a)-
(2¢) is a nonlinear, parabolic, partial differential
equation of the form

2\ 1

CIT, = (-1;) sin(wx/2) dx ax
—[1 — m tanh(c, T 6)]6T4 + uQ(x){1 — b(x)

+ [T + (T — cz(x) — T,n)-1}., (4)

where T, = dT/dT and T, = 3T /dx. It has to be
solved subject to the boundary conditions

[sm(vrx/Z)k(x)Tx(X)]

T(0,8)=T(1,1) =0 (5a,b)
and to the initial condition
T(x, 0) = T(x). (5¢)

Egs. (4)-(5) are the basis of the G Model. With
minor modifications, they are the equations for the
BG model as well.

The present (BG) model is obtained by introducing
two changes in the temporal structure and one
change in the spatial structure of the G model. The
first change which affects the temporal behavior of
the model was to use a new set of values for the heat
capacity, C = Cy(x), valid for very long climatic time
scales. These values were based on the assumption
that, on the time scales of interest, 10°~10° years,
convective overturning extends the effect of solar ra-
diation all the way to the bottom of the oceans.

To compute the new heat capacity C/x) the sur-
face of the hemisphere is represented by a 5° latitude
X 10° longitude grid. For each box, the fractions of
the surface area covered by land, ocean and ice are
determined by using two recent data sets: one is the
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TaBLE 1. Empirical functions appearing in Egs. (1), (2) and (4) (after Ghil, 1976).

Colatitude T C ) Q b z k, k,
¢ (deg) (X) (1. Jm™2 K™") 10* I m2s™") (m) (10°JK'm25™") (I08J Ns™)

0 - 247.3625 - 0.2094 0.1784

5 : 2.192 1204.5 0.1973 ' 0-

10 252.0740 0.4187 0.1842

15 2.960 820.0 0.2595 0.3900
20 262.5715 0.6280 0.2026
25 ‘ 2.934 295.0 0.5022 0.8278
30 271.2980 . 1.9784 0.2424 4
35 2.914 150.5 0.6289 1.4382
40 278.9325 2.3552 0.2914
45 2.915 193.5 0.6325 2.0230
50 285.7530 2.4335 0.3366
55 2.868 301.0 0.7100 1.5642
60 291.4090 2.4339 0.3743
65 2.821 261.0 0.8472 0.2890
70 296.0815 2.3552 0.4024
75 2.804 133.5 1.3424 —1.0635
80 298.7815 2.5122 0.4200 ' .
85 ‘ 2.805 156.0 2.0114 : —4.4372
90 299.3510 2.3552 0.4258

topography data set compiled by Gates and Nelson
(1975), the other is the climatological surface tem-
perature data set compiled by Alexander and Mobley
(1974). In calculating the “deep-ocean” heat capac-
ity C«x), the penetration depths of solar radiation
in land and iceare set to zero and the ocean depths
are directly obtained from the topography data set
of Gates and Nelson (1975). The mass of ocean water
~ for each.grid box is then computed using the known
values of density for ocean water. This mass is in
turn multiplied by the specific heat of ocean water
to obtain the energy that is needed to heat up the
area inside the grid box by 1 K. Upon dividing this
energy by the area of the grid box, the result obtained
is the surface heat capacity for this particular grid
box. These surface heat capacities are averaged over
a latitude circle to get the surface heat capacity of
that particular latitude. Table 2 lists the values of
C; as a function of colatitude. As for the functions
in Table 1 (cf. Ghil, 1976), they correspond to an
average of the Northern and the Southern Hemi-
sphere values at the same latitude. '

TABLE 2. Values of the “deep ocean” heat capacity C,,
as function of colatitude ¢.

Colatitude (deg)

0 10 20 30 40

C, (10" I m2K™') 0.6636 0.2952 0.4170 0.9421 1.0459

Colatitude (deg)

50 60 70 80
12222 1.1464 1.1577 12176

90

C,(10° I m2K™") 1.1992

The only change made in the spatial structure of
the G model consists of modifying the albedo-tem-
‘perature parameterization given by Egs. (2a)-(2c).
The original equation includes only the ice-albedo
feedback according to Sellers’ (1969) parameter-
ization. Of the various other physical factors that
contribute to the Earth’s albedo-temperature feed-
back, cloudiness is generally thought to be the most
important. Investigators in the field of climate mod-
elling at every level of complexity have repeatedly
emphasized the need for an adequate parameter-
ization of cloud amount in terms of climatological
variables. However, successful inclusion of cloud ef-
fects in the albedo-temperature parameterization has
so far turned out to be an elusive goal. Many studies
of dependence of cloudiness on temperature have
been made, such as the observational ones of Cess
(1976) and the theoretical ones of Schneider (1972),
Paltridge (1974) and Temkin et al. (1975), among
others.

In the present work, a very simple and crude cloud
parameterization is attempted. Specifically, the hAy-
pothesis is made that in a certain range of surface
temperature just above that corresponding to the
permanently ice-covered ground, the albedo attains
again a certain high value; for surface temperatures
both larger and smaller than the limits of this range,
the albedo is smaller. This hypothesis is based on the
idea that, near the ice margin, steeper temperature
gradients engender increased baroclinic activity, and
hence more cloudiness. Observational and synoptical
work of Lamb (1955), of Namias (1964, 1978) and
of Schwerdtfeger and Kachelhoffer (1973) provide -
support for this hypothesis. Evidence for a close re-
lationship between ice margin and the track of max-
imum cyclone frequency was recently summarized
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T{K}

350

F1G. 1. Temperature-albedo parameterization used in the model. The
hypothetical “kink” near 280 K is meant to represent the net climatic
effect of increased cloud albedo due to intense baroclinic activity in the
variable stofm tracks near the ice margin.

by Goody (1980). In our parameterization, the
higher cloud albedo over the baroclinically active
band then compensates for the decrease in ground
albedo over a certain temperature interval.

It is clear that the storm track will affect outgoing
radiation, as well as the reflection of incoming ra-
diation. The greenhouse effect of clouds, however,
is already included in the original Sellers parame-
" terization [Eq. (2d)], while the possible effect of
clouds on albedo was not included in the Sellers
(1969) model or the original G model. Many addi-
tional effects on albedo, such as that of vegetation
(e.g., Cess, 1978), have not been included in the fol-
lowing parameterization; they are certainly impor-
tant and should be investigated as soon and as thor-
oughly as possible.

To simplify the ensuing parameterization of the
cloudiness effect on albedo, the dependence of the
albedo on latitude, represented by the terms b(x) and
z(x) in Eq. (2a), is eliminated. In the present model,
b(x) and z(x) in (2a) are replaced by two constant
quantities, b and Z: b = 2.848 and Z = 249.7 m.
These values are obtained by area-averaging the
original Sellers (1969) values of b(x) and z(x), as
given in Table 1. With this change, the albedo-tem-
perature parameterization becomes the same for all
latitudes. The values of ¢, ¢; and m also have to be
adjusted slightly. The new values are: ¢, = 0.0096,
¢3 = 1.415 X 107 K™%, m = 0.53.

The present parameterization can be described as
follows. The surface temperature range, over which
the albedo changes linearly in the Sellers’ parame-
terization due to a decrease in the presence of ice,
is now the same for all latitudes; the lowermost and
uppermost temperatures are 210 and 272 K, respec-
tively. The hypothetical contribution of clouds in the
albedo-temperature parameterization occurs above
this range. A symmetrical “kink” in the albedo-tem-

perature plot centered at 280 K and of triangular
shape with a width of 10 K at its base represents this
contribution. The albedo at 280 K, the highest point
of the triangle, is 0.6. The above described albedo-
temperature scheme is illustrated in Fig. 1.

The “kink” in the albedo apparent in Fig. 1 is not
prominent in previously available temporally and
zonally averaged climatological data on the Earth’s
cloudiness and radiation budget (Schutz and Gates,
1974). On the other hand, a residual peak near 280
K in seasonally and zonally averaged cloudiness and
associated albedo does seem to appear (A. Hender-
son-Sellers, personal communication, 1981), when
carefully analyzing some recent remote-sensing ob-
servations (Winston et al., 1979). Clearly the en-
hanced baroclinic activity discussed by Namias
(1964, 1978) and by Goody (1980) is longitude-de-
pendent and' its latitudinal position, as well as its
location and duration in time, will vary.

Circumstantial evidence for temporal variation of
this cloud band can in fact be found in North and
Coakley (1979). Analyzing seasonal, zonally aver-
aged insolation, temperature and albedo data, they
found near synchroneity between hemispheric albedo
and temperature, with both lagging by two-to-three
months behind insolation. Their conclusion was that
most of the seasonal variation in albedo was not due
to a zenith angle effect, but rather to a temperature-
profile dominated effect. The cloud band we are dis-
cussing could play a major role in this seasonal tem-
perature effect.

Given variability in time and space of the ice-mar-
gin related snow track, it is not surprising that it will
not show up as a clear peak in averaged statistics
(Jacobowitz ef al., 1979, Fig. 4). The nonlinear in-
teractions connected with it, however, might give a
net effect on climate, even after averaging.

The situation would be similar to the climatology
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of blocking (Rex, 1950a,b). The flow patterns of
individual blocking evénts are smeared out by lon-
gitudinal and seasonal averaging. Their effect on a
season’s and a continent’s climate are apparent
nonetheless. Hence our “kink™ is an attempt at pa-
rameterizing the climatic effect of cloud-ice margin
feedback, even though this feedback itself is barely
evident from averaged climate data. The addition of
this mildly plausible effect will have interesting con-
sequences for the model’s steady-state, as well as
time-dependent behavior (Sections 3a and 4b). Its
physical basis deserves, therefore, further attention.
The ongoing accumulation of climatic satellite data
on cloudiness and albedo should provide, within a
few years, the verification or invalidation of the
mechanism postulated here.

The second change in the temporal structure of
the G model is that in Eq. (2a) the albedo of that
part of the ground which is covered by ice is assumed
not to be determined exclusively by the present tem-
perature T(z), but rather by a weighted linear com-
bination of past temperatures, i.e.,

T*(¢) = f w(s)T(t — s)ds, (6a)
0

with time-dependent weights w. The albedo of a lo-
cation x with bare ground, i.e., T(x, t) = T,,, which
is not covered by ice at any time of the year (cf.
Ghil, 1976), is still determined by the present tem-
perature only. This asymmetric contribution of past
temperatures to present albedo was assumed in order
to model the slow build-up and rapid melting of ice
sheets (e.g., Imbrie and Imbrie, 1979): in our model,
advancing ice is retarded by past, warmer temper-
atures affecting the local radiation balance, while the
retreat of ice immediately permits the establishment
of a new, more positive radiation balance.

The physical reasoning behind these assumptions
is that there is a time lag between the earth’s surface
temperature and global ice volume (Killén et al.,
1979; Ruddiman and Mclntyre, 1979). The time
scale over which ice in its various manifestations
affects the terrestrial climate is very wide (Mitchell,
1976). For large continental ice sheets the times for
advance and retreat are both very long and of the
order of 10° years. .

Killén et al. (1979) and Ghil and Le Treut (1981)
have studied models in which the mass budget of
continental ice sheets and their plastic flow are rep-
resented explicitly, and coupled to the surface ra-
diation balance. They have shown that in such a cou-
pled system, self-sustained oscillations obtain. These
oscillations are characterized by the maximum ice
extent lagging about one-quarter period behind the
maximum temperature. Such a quarter-phase lag is
substantiated by the geochemical work of Ruddiman
and MclIntyre (1979, 1981) with North Atlantic
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deep-sea cores. They suggest 1000-6000 years- for
the length of the phase lag.

In determining the albedo of the ice-covered
ground, the weight assigned to a past temperature
T = T(t — s5), where s = 0 denotes the present tem-
perature, is given by the truncated Gaussian form

Ae P2 0 < 5 < 27

w(s) = {0

where A4 is a normalizing constant over the time-
lag tail, ¢ the half-width of the distribution, and 7
the value of the time lag at which the maximum of
the distribution occurs. We shall denote the albedo
computed according to the prescription above by «
= a*(T*; 1, 0), or simply a*. When delay effects are
ignored, we shall use the notation o = (T} 0, 0),
or simply a. '

In the absence of direct observational knowledge
on the weights w(s), expression (6b) seemed to be
the most reasonable one. Both 7 and ¢ are prescribed
parameters of our model. The estimates of 7 or o
which could be made from the theoretical work of
K4&llén et al. (1979) and from the observational work
of Ruddiman and Mclntyre (1981) are only approx-
imate. Therefore, various values of 7 and ¢ were used
during the actual computation, and effects of chang-
ing 7 and o on the solutions were studied. Numerical
experiments are made with several values of 7 that
cover a realistic range of time lags, O(10°-10* years).
Shorter values of 7, O(10? years), were only used to
better understand model behavior, mathematically
as well as physically.

This completes the description of the present

27 < §, (6b)

‘model. The numerical methods used for the com-

putation of its solutions are described in Appen-
dix A.

3. Stability results

a."Steady-state structure of the model: Internal sta-
bility

For present-day insolation conditions, u = 1, the
BG model has five steady-state solutions with positive
absolute temperatures. Their computation is de-
scribed in Appendix A. We denote them, in order
of decreasing mean temperature, by 7,(x), T,(x),
.. .3 Ts(x). The relevant physically interesting quan-
tities for each of the steady-state solutions are given
in Table 3. For comparison, the corresponding quan-
tities for the data climate 7(x) are also included.

The original G model, like other Budyko-Sellers
models with albedo-feedback only, had three steady-
state solutions with positive temperatures. Another
model studied by Bhattacharya (1979) and by Ghil
and Bhattacharya (1979), using a slightly different
albedo-temperature curve, had seven. This shows the
dependence of the number of physically possible
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TABLE 3. Steady-state solutions of the BG model.* T denotes the spatial mean of a solution.

T (K) 04 AT (K)
T (K) After 5° e-folding T(0) (K) Equator-to-pole
Steady-state latitude grid T (K) time Polar temperature
Climate solution interpolation Asymptotic (years) temperature difference
T 287.20 247.36 51.99
T, 286.61 287.07 285.42 -2060 257.59 39.60
T, 281.67 282.13 283.63 +520 254.18 38.12
T, 27294 273.14 273.14 - —-35 249.79 27.74
T, 241.96 242.14 244.13 +230 216.77 33.92
Ts 175.17 175.26 208.88 -210 169.18 7.89

* See Appendix A for further details on the difference between various ways of computing the steady states. Negative e-folding
times, or relaxation times, indicate stability; plus signs indicate instability or growth of small perturbations. Compare also with Table

3 of Ghil (1976) for results with the G model.

model steady states on the exact shape of the albedo-
temperature dependence. Notice that the number
and shape of steady states does not depend on either
the heat capacity C(x) or the time lag [Eq. (6)] in
the albedo.

Solution T',(x) of this model corresponds. roughly
to the present climate, and to the uppermost “cli-
mate” of the G model, while Ts(x) corresponds to
the “deep-freeze” of the G model. In order to un-

derstand better the roles of T,(x), T5(x) and T,(x),
" we have to consider the solutions’ stability.

Internal stability of the steady states in Table 3,
in the absence of delay effects, was investigated by
carrying out time integrations of Eq. (4) with «

= oT: 0, 0) and with initial conditions (5¢) close -

to each steady state. The numerical method for car-
rying out these integrations is described in Appendix
A. Time-dependent solutions of such an initial-value
problem will converge in time to the steady state
nearby if it is stable, and diverge from it if the steady
state is unstable. The corresponding relaxation times,
or exponential decay times, are also given in Table
3 for the stable states. For the unstable ones, the
exponential, or e-folding, growth times are given.

The results indicate that T,(x), Ts(x) and Ts(x)
are internally stable, while 7T,(x) and T,(x) are un-
. stable. Hence, T5(x) is another stable steady state
in the BG model, not present in the G model or other
Budyko-Sellers models. It is introduced by the
“kink” in the albedo-temperature curve. To convince
us further of this fact, we next consider the depen-
dence of the steady-state structure on the insolation
parameter u, the fractional change in the “solar con-
stant.”

The average temperature 7 of the model steady
states is plotted in Fig. 2 against u over a range 0.5
< u < 2.3. The graph T = T(u) resembles a double
S. The ascending branches (A, C and E) intersect
the vertical line u = 1 at Ty, T, and T, respectively.
They are separated by the descending branches B
and D, which contain the points (1, T,) and (1, T,),
respectively. The connection between the slope of a
branch and the internal stability of the steady states

- on that branch is the same for this model as conjec-

tured by Budyko (1972) and proven rigorously for
a class of simple models by Cahalan and North
(1979). The positive slope of the branch, dT/du
> 0, implies that the steady states along that branch
are internally stable, while negative slope implies
that they are unstable. :
Comparing our Fig. 2 with Fig. 6 of Ghil (1981a),
which gives the S-shaped steady-state structure of

TK)
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FIG. 2. Bifurcation curve, T = T(u), for the steady-state struc-
ture of the model: T is globally and annually averaged surface
temperature and p is fractional change in insolation. At present
insolation conditions, 4 = 1, there are five climates (see Table 2
for details). The branches through climates 1-5 are denoted by
A-E. The appearance of the branches B and C is due to the “kink”
in the albedo (Fig. 1).
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the G model, it becomes clear that T,(x) of the BG
model, and its branch D correspond roughly to the
intermediate, unstable steady state of the G model,
and to its branch B. The slight distortion of branches
A and D of the BG model, near ¢ = 1, and the
presence of the additional branches B and C of this
model, is due to the albedo kink at 7 = 280 K (Fig.
2). In particular, the *“sensitivity” of the *“‘present-
climate” branch A to changes in u is enhanced by
the postulated cloud-albedo feedback mechanism.

For a zero-dimensional (0-D) globally-averaged
model, the number of steady states equals the num-
ber of intersections of the R, = R{T) curve with the
R, = R,(T) curve (Crafoord and Kaillén, 1978, Fig.
1; Ghil, 1981a, Fig. 4). There would be three inter-
* sections for a 0-D version of the G model, and five
intersections of a 0-D version of our present model.
~ For a one-dimensional (1-D) model, things can be

slightly more complicated (Ghil and Bhattacharya,
1979; Ghil, 1981a). The existence of the two addi-
tional branches, B and C, in the present model, and
the close correspondence between its branches, A, D
and E, and the three branches of the G model is
therefore of some interest.

In particular, values of T on the two stable
branches A and C, for u close to 1, are within O(10
K) of each other. This can make the model inter-
esting in studying glaciation cycles: a C-state could
represent a glacial climate, while an A-state could
be interglacial. Indeed, the difference in temperature
between the last glacial temperature minimum, and
the present interglacial temperature near-maximum

is currently believed to be of the order of magnitude

‘of a few degrees, although opinions on its exact size
vary. o

To establish a possible connection between our
model and the glaciation-cycle problem, we have to
consider next the model’s time-dependent behavior.
In the absence of delay effects, this behavior is rather
simple. We shall discuss it first, and consider the
effects of introducing delays afterwards.

b. Variational principle: Structural stability

For fixed u, u = 1 say, we have seen in the previous
subsection that initial states close to a steady state
will evolve toward that steady state if it is internally
stable, and away from it if it is unstable. In more
precise language, this type of internal stability is /in-

_ear stability: it applies only very close to a steady
state. To find out what happens further away from
the steady states, and, even more ambitiously, for
any initial state, one has to consider nonlinear sta-
bility. This can be easily done for the problem at
hand due to the existence of a variational principle.

We consider the functional (Ghil, 1976)
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7T w = [ (T

= r(x)G(x, T(x); p)}dx, (7a)

with p(x), r(x) and G(x, T) being related to the
coefficients of Eq. (1) by

p(x) = (2/7)* sin(7x/2) - k(x),
r(x) = sin(wx/2),

(7b)
* (7¢)

G(x, T; p) = fT [RAx, S; 1) — R(x, S)ldS. (7d)
Here
f F(x, S)YdS

is the indefinite integral of F(x, §) at fixed x with
respect to the variable S. For instance, if F(x, T)
= Rx, T) — R,S(x, T) were given by F = ax
+ bT(x), then G would be

G = axT(x) + LbT*(x).

Notice also that the parameter u, which appears only
as a coefficient in R(x, T(x); u) [cf. Eq. (1b)] does
not play any role in the integration. A

The steady-state form, d7/3t = 0, of Eq. (4) is the
Euler equation (Courant and Hilbert, 1953, Chap.
4) of the functional J{T u}. Such a variational for-

-mulation of equations governing simple climate mod-

els was also considered by North er al. (1979). It
was recently applied to the study of stochastic per-
turbations for such simple climate models by Nicolis
and Nicolis (1981), Nicolis (1982) and Sutera and
collaborators (Sutera, 1981; Benzi et. al., 1982).

We shall describe first the functional J{T(x); u}
for a fixed value of u, u = 1, say. Then, given any
temperature profile T = T(x), Eq. (7) assigns to it
a certain real number J. For visualization purposes,
let {¢,(x)} be a set of basis functions for the tem-
perature profiles, so that any profile 7(x) can be
written as

ﬂn=$nmn'

Such a set of basis functions can be found for this
problem, since it is a generalized Sturm-Louville
problem (Ghil, 1976). It was shown by North er al.
(1979) that it is convenient to let the Legendre poly-
nomials, with cos(wx/2) as argument, be the basis
functions.

Using the coefficients T, as coordinate axes, it is
possible to plot J{2 T,¢,(x); 1} as the “height” h
of the hyper-surface given by Eq. (7), h = J{T}. For
a truncated representation of T(x), with n = 0,2 only,
such a contour plot appears in North et al. (1979,
Fig. 2).
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In a plot of J{T(x); 1}, stable steady states of Eq.
(4) appear as minima, while unstable ones will ap-
pear normally as saddle points, i.e., points in the
neighborhood of which the surface rises in certain
directions, but descends in at least one direction. The
evolution of a solution of Eq. (4), again with no de-
lays, a = a(T; 0, 0), can be pictured as motion along
the surface h = J{T; 1}, i.e,

r(x)C(x)T, = —8J{T; 1}/8T; (8)
here 8J/8T represents the functional derivative of J
with respect to the temperature profiles 7(x). If the
basis {¢.(x)} is orthonormal and C(x) = constant,
then Eq. (8) can be rewritten (North et al., 1979)
as a decoupled system of ordinary differential equa-
tions for the evolution of the coefficients T, = T,(t):

CT, = —3J/dT, .

Here a dot denotes the time derivative.

It follows from (8) that the solutions of (4) will
always “flow” downslope. It can also be shown that
the surface 2 = J(T) tends to infinity far away from
the steady-state solutions. Hence the “flowpath” or
trajectory from any initial state will eventually end
up at one of the minima. A trajectory could be slowed
down, however, near saddle points, and leave their
neighborhood only after a relatively long time (Ghil,
1976; Ghil and Bhattacharya, 1979).

This discussion elucidates the model solutions’
nonlinear stability, for fixed u(u = 1) and in the
absence of delay effects, @ = o(T; 0, 0). The surface
h = J{T; 1} has three minima, at T = T (x), T(x),
Ts(x). These are surrounded by “cauldrons,” or at-
tractor basins. The basins are separated by ridges;
at the lowest points of the ridges sit the saddle
points, or “passes,” T = T,(x), T4(x). This whole
structure of three basins and two ridges is itself at
the center of a larger cauldron, with A rising to in-
finity all around. Thus the only question for any tra-
jectory, starting at an arbitrary point [T = T(x), h
= J{T(x)}] on the surface, is: at which one of the
three minima will it end?

The study of the model’s structural stability deals
with the way in which this picture changes as the
insolation parameter u changes. From Fig. 2 it is
clear that, as u decreases from u = 1, the bottom
T'a(x; p) of the cauldron originally at 7',(x) rises and
eventually coalesces, at u = u, = 0.999, with the pass
Ts(x; p) originally at T»(x). Finally, this whole part
of the “topography” merges into a slope which de-
scends into the cauldron with bottom at Tc(x; n). As
u decreases further, it is the turn of the cauldron C
to be flattened out of existence, leading to the dis-
appearance of pass D as well, at u = u, = 0.88. Thus,
for small u, only the cauldron E is left. All the while,
the topography still rises to infinity in the distance.
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F1G. 3. Dependence of small-amplitude model oscillations on the
lag parameters 7 and ¢: 7 is the mean value of the lag, o is its
half-width. The solid curve (scaled by the axis to the left) shows
the value of o, which separates the sustained oscillation regime,
for smaller o, from the stable steady state regime, for larger o.
The dashed curve (scaled on the right) shows the peak-to-peak am-
plitude A of the sustained oscillations, as a function of 7; the
dependence of A on ¢, for o < o, is very weak. Notice the plateau
in 4 = A(7) for 1000 < 7 < 3000 years.

As u increases, it is cauldron C which disappears
first, together with pass B, at u = u3; = 1.075. Then
cauldron E and pass D disappear, at u = u, = 1.844,
leaving only cauldron A for large u. Thus the model’s
internal stability, nonlinear as well as linear, varies
smoothly with the external parameter x. Only a num-
ber of jumps occur, at four values of u, when the
number of steady-state solutions changes in pairs,
from one to three to five, and then back to three and
to one, as u increases from 0.5 to 2.5. An existing
steady state does not change its internal stability as
u varies.

4. Time-dependent model behavior: delay effects

Up to this point we have investigated the model’s
steady-state solutions and, in the absence of delay
effects, its time-dependent solutions. The latter could
be represented by trajectories flowing downslope
along the surface h = J{T(x); u} given by Eq. (7),
toward the existing minima. The number of minima
corresponding to positive temperature profiles, one,
two or three, depends on the value of u.

a. Importance of delay effects

We are ready to study now the effect of delays as
introduced in Eq. (6), a = a*(T™; 7, ¢). In this sub-
section, some basic concepts on delay effects and
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their connection to the variational principle of Sec-
tion 3b are introduced. The reader, impatient to see
the ‘'main results of this investigation, can proceed
directly to Section 4b, and refer back to 4a as needed.

That delays can drastically alter time-dependent
behavior is easily seen from the following simple,
linear example (Driver, 1977, Sec. 22):

u(t) = —u(t — 7). 9)
In the absence of time delays [ = 0] Eq. (9) has

the single stable steady state # = 0, and all sclutions

tend exponentially to it, i.e.,
u(t) = uge™".

With a time délay ==/ 2, however, Eq. (9) has the
family of nontrivial, periodic solutions

(10)

where u, and v, are arbitrary. It can be shown that
these solutions are stable in a suitable sense with
respect to changes in the initial data of (9) (Hale,
1977, Chap. 1). ‘

The same solutions (10) would obtain if one con-
.sidered, instead of (9), the system of two equations
with no delays, )

u(t) = uq cost + v, sint,

u="v, (11a)

b= —u, (11b)

and with initial conditions '
u(0) = uy, 0(0) =1, (11¢)

The obvious identification to be made in connecting
the two points of view is

v(e) = —u(t — = /2). (11d)

The delay differential equation (DDE) (9) is thus
‘equivalent, in a sense, to a system of two ordinary
differential equations (ODE’s), Egs. (11a,b). In this
interpretation, the lagged variable v acquires a cer-
tain independence from u, the two being coupled by
the system (11).

The steady-state form of Eq. (9) is the Euler equa-
tion of the functional

J{u} = u?/2.

_ In this trivial case, J is just a usual real-valued func-
tion of the scalar u. Eq. (9), with no time delay (+
= () can be written in terms of J as

i = —dJ/du. (12)

Clearly, (12) represents flow downslope on the sur-
face h = u?/2; in this simple example, the “surface”
is just a concave curve in the (u, k) plane.

We would like to interpret the solution with no
delay as a point rolling down the surface & = J{u}.
A little care has to be exercised in this interpretation,

1
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and in viewing J{u} here, or J{T(x); u} in Section
3b, as a potential. Namely, in such an interpretation,
u would have to be the velocity, rather than the pos-
ition of a particle, in the force field —dJ/du. Then
Eq. (12) can be viewed as the equation of metion of
a particle with *“zero mass,” and velocity u. Since it
has no inertia, the particle stays at the bottom of the
cauldron, where forces are zero, once it reaches it.
Actually, Eq. (9) is a first-order ODE for u(1),
rather than a second-order ODE,; it contains only the
“velocity” u, rather than containing the “position”
of the particle as well. Similarly, Eq. (4) is a para-
bolic PDE, containing only the first time derivative
of T(x, ). It does not contain the second time de-
rivative, as a hyperbolic PDE, or wave equation,

~would.

The fact that only first-time derivatives are present
in (4) or (9) avoids the contradiction which would
otherwise arise from J depending on velocity, and
hence on the particular trajectory of a “particle,”
rather than on position only. The contradiction is
removed by the “position” of the particle being ab-
sent. from the equation altogether. Keeping this in
mind, the geometric interpretation of Eqs. (8) and
(12) is still very helpful for understanding the results
in' the present and preceding sections. The word
“flow” we used in Section 3b is entirely correct in
this interpretation for a fluid moving only under the
effect of viscous forces from an arbitrary initial po-
sition to the bottom of the cauldrons. Thus J{u} in
this case corresponds roughly to a velocity potential,
in the sense of fluid mechanics.

We wish now to explain intuitively why the so-
lution of Eq. (9) with time delay + = w/2 does not
stay put at the bottom of the cauldron (u =0, A
= 0), but oscillates around it with amplitude (u,’
+ v,%)!/2, given by its initial values. The foregoing
discussion of the case with no delay gives the desired
clue. '

Let us interpret u as position, v = —u(t — 7/2)
as velocity, and write the equation governing the
motion as }

U= —u, (13a)

A
with initial conditions ‘
u(0) = up , (13b,¢)

The solution is still (10), and this is but another way
of viewing (9) or (11).

Eq. (13a), however, has a variational principle. It
is the Lagrange equation (Goldstein, 1980, Sec. 1.4)

li(O) =19 .

doL oL \

dioi ou O (142)
for the Lagrangian

L= ?—u?))2, (14b)

where L is the difference of the kinetic energy 7T



AUGUST 1982

and the potential energy YV, i.e.,
L=T-Y,
T =u*/2, ¥V =u?/2.

In this interpretation, V = J{u} becomes a poten-
tial, with the force equal to —dV /du, in the usual
sense of particle mechanics. The variational principle
is simply Hamilton’s principle (Goldstein, 1980,
Sec. 2.3).

The particle whose motion is governed by Eq.
(13) is now endowed with unit mass, and it does not
come to rest at the bottom of the potential well A
= YV = u?/2. It continues rather to oscillate indefi-
nitely, since friction is absent, with amplitude (u,?
+ v5%)'/%, so as to conserve its total energy

E=T+ Y =+ u?)/2

We see from both (11) and (13) that the effect of
delays is to introduce an inertia into a first-order
equation and to allow therefore the possibility of
oscillations where none could obtain in the absence
of delays. .

We can think of Eq. (9) as the local linearization,
around one solution of the steady-state form of the
equation, of a nonlinear DDE. For a nonlinear DDE,
one would expect periodic solutions, if they exist at
all, to be present for a whole range of delay values
close to «/2 and, for each value of 7, to be unique
and stable (Hale, 1977, Chap. 10). Such behavior
was indeed observed for a version of our model in
which the delays are localized in time (¢ = 0),
i.e.,, w(s) in (6a) is a 5-function (Ghil and Bhatta-
charya, 1979, Fig. 7 and Table 1). In fact, in this
discrete-delay version of our model, the branch of
stable, periodic solutions seemed to bifurcate from
a stable steady state by Hopf bifurcation (Hale,
1977, Chap. 11).

In the following we shall discuss results with the
present, distributed-delay version of the model, which
is presumably somewhat more realistic. Solutions
will show behavior which is more complex than sim-
ply-periodic. The preceding discussion of the simple
DDE (9) and of its variational interpretation (14)
will help in the heuristic explanation of solution be-
havior for the BG model.

Further useful references on DDE’s and the dif-
ferences in solution behavior between them and
ODE’s are Hale (1971, Chap. 1) and MacDonald
(1978).

b. Model results

This subsection contains the main results of our
investigation. It shows that the simple model with
delayed albedo described in Section 2 can exhibit
quasi-periodic, as well as nonperiodic behavior. The
spectral analysis of the model’s solutions in time
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shows a continuous power background, with discrete
peaks superimposed on it. '

1) DEPENDENCE OF OSCILLATIONS ON LAG PA-
RAMETERS

We were mainly interested in model oscillations
near the data climate, i.e., the actual climate of the
present. Hence, initial conditions near model cli-
mates 1 and 3 were used, and present insolation con-
ditions, u = 1, were applied.

Temperature and albedo data for the beginning
of the numerical time-dependent computations were
taken to correspond to each other, ie., o = (T} 0,
0) for 0 < t < 27, as described in Appendix A. At
t = 21, the effect of the delays is allowed to begin,
a = o*(T; 7, ¢), and it is kept for the rest of the
calculation.

No oscillations obtain when temperatures are
equal to or higher than at present, T(x, 0) = T\(x).
In other words, the uppermost model climate is not
destabilized by delay effects as long as temperatures
stay as warm or warmer as they are at present.

For large negative perturbations, T(x) — 10 K
< T(x, 0) < T\(x) — 7.5 K, the presence and nature
of oscillations depends on the value of the lag pa-
rameters 7 and ¢. Recall that [cf. Eq. (6)] 7 gives
approximately the mean value of the distributed lag,
while ¢ gives its half-width, i.e., the extent to which
the Gaussian weight w(s) of (6b) differs from a é-
function. The connection between DDE’s with dis-
tributed delays and their simpler, discrete delay (o
= 0) counterparts is discussed in MacDonald (1978,
Chap. 4).

For a given 7, there exists a critical value of o,
o, = o(7), such that for ¢ > ¢, there are no sustained
oscillations. In other words, if the influence of the
past temperature history is nearly averaged over
an entire cycle, incipient oscillations are damped
out. The values of ¢, as a function of 7 are given in
Fig. 3.

For ¢ < o, oscillations about climate 1 obtain.
Their amplitude depends mostly on 7, and very little
on o. The peak-to-peak amplitude A4 of the oscilla-
tions in mean temperature [T = 7(¢)] as a function
of 7 is also shown in Fig. 3. The shape of the curve
A = A(7) is interesting. The amplitude first increases
sharply with 7 from 7 = 7o ~ 475 years to 7 ~ 1000
years, then stays nearly constant between 7 =~ 1000
and 3000 years, to increase again up to v = 10 000
years. It is zero for 7 < 7¢; over the constant range,
it is ~1 K. The temporal average of the oscilla-
tions in T is independent of 7; it equals precisely T,
= 285.4 K.

The actual shape of the oscillations in the spatially
averaged temperature T = T(¢) is shown in Figs. 4a-
4f. For the lower values of 7, 500 years < 7 < 1000
years, a predominant oscillation with a period ap-
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proximately equal to 27 is evident (Figs. 4a-4c). This
“carrier wave” shows a slight amplitude modulation
with periods of the order of 10-1007. Both the carrier
wave and the modulations appear to be nearly si-
nusoidal.

At 7 =~ 1500 years (Fig. 4d), the nature of the

|
(Ky)

oscillations seems to change. For 7 = 5000 and
 m— § o w 10 000 years (Figs. 4e, 4f), the shape of the “carrier
g H E£ wave” becomes square, rather than sinusoidal. Spikes
"g’ 55 of irregular shape, height and spacing protrude from
g ;L lo 8« the basic square wave.
S ® g
g ;l: g g 2) STABILITY OF OSCILLATIONS
= LL ° —E i We studied the stability of both types of oscilla-
1 3£ tion, the approximately sinusoidal as well as the ir-
g% regular ones, to perturbations. The perturbations
Ty were applied at ¢t = ¢, = 50000 years, when the
lg 8= oscillations are already well established. First, uni-
N 'i & form perturbations were introduced, 7'(x, t;) = T(x,
5§ t) + Ty, T(x, t;) being the unperturbed solution at
= § time ¢ = ¢,, and T, the constant perturbation.
12 B~ “Warm” perturbations, 7, = —7.5 K, had the
¢oon effect of damping out the oscillations. The oscilla-
E tions were stable to “cold” perturbations, —10 K
L, L o % < To < —7.5 K: after a transient response period, the
NN EYEEE .38 7 same type of asymptotic behavior occurred as for the
-8 8 8 28 & 32 333 é unperturbed solution. The response to both warm and

cold perturbations agrees with the results on initial
data T(x, 0), viz., existence or nonexistence of sus-
tained oscillations, respectively.

When nonuniform, random perturbations, 7T'(x,
1) = T(x, t;) + 6(x) were applied, with # random,
either stability or damping obtained, according to
the mean value and the standard deviation of §. The
reasons for this will be discussed later, along with
the geometric interpretation of the oscillations.

t
(Ky)

3) TRANSITION TO IRREGULAR BEHAVIOR

In order to understand better the nature of the
oscillation for given, fixed 7, as well as its change
with 7, we performed a spectral analysis of the so-
lutions obtained. A spectral analysis package written
by D. L. Vulis and 1. L. Vulis was used; the package
had been previously tested and it was implemented
in Vulis and Monin (1979). For the sake of com-
pleteness, the analysis method used is described in
Appendix B. The estimated spectra S(f) of the so-
lutions in Fig. 4 are shown in Fig. 5 on a log-log
scale, f being the frequency.

In Figs. 5a-5c a very strong peak at a frequency
fo given by fo, ~ 1/(27) dominates the spectrum. At
its right appears a number of almost equally high,
but narrower peaks, the harmonics of the basic os-
cillation. The small-amplitude, broad undulations in
the spectrum to the left of f, do not represent sig-

_ nificant peaks. :

The three most significant spectral peaks for each

140

1
120
other interval lengths, did not exhibit any behavior different from that shown here. Notice the change in character of the oscillations

mean (moving average) over 100 years of model solutions was used. The numerical output itself, as well as running means taken over
from roughly sinusoidal waves to square waves, with irregular spikes, at about 7 = 1500 years (Fig. 4d).
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value of 7 in Figs. 4a-4f and 5a-5f are given in Table
4. The second significant peak corresponds to 2f, in
Fig. 5a, and to 3f, in Figs. 5b-5f. A third significant
peak is absent in Fig. 5a; it is located at 6f, in 5b,
at 4f, in Sc, and at 5f, in Figs. 5d-5f.

Starting with Fig. 5c, the number of narrow peaks
supérimposed on the continuous part of the spectrum
increases. The width of these peaks increases in Fig.
5d. In Fig. 5e the distinction between peaks and
background decreases further, to disappear almost
entirely in Fig. 5f.

The change in the character of the oscillations
(Fig. 4d) and of their spectrum (Fig. 5d) for =
~ 1500 years corresponds to a transition from quasi-
periodic to nonperiodic, irregular, chaotic behavior.
In many fluid flows, such a transition occurs when
turbulence sets in. It is currently believed (Ruelle,
1980) that the transition in the physical system’s
behavior can be described by the change in nature
of the attractor set for the mathematical model of
the system.

The attractor set of a dynamical system whose
asymptotic behavior is stationary contains only iso-
lated stable points. If asymptotic behavior of the sys-
tem’s solutions is periodic or quasi-periodic, the at-
tractor set contains stable limit cycles (periodic) and
stable multi-dimensional tori (quasi-periodic). Non-
periodic behavior (Lorenz, 1963) is associated with
the presence of a “strange attractor.”

A stable equilibrium point is itself zero-dimen-
sional and it is attracting in every possible direction
of the system’s phase space. Stable limit cycles and
tori are one-dimensional or n-dimensional, respec-
tively, with 2 < n < d, d being the dimension of the
phase space, i.e., the number of the system’s degrees
of freedom. They are attracting in all directions
“perpendicular” to their “surface,” viz., in d — n
independent directions; they are neutrally stable in
all directions which are “parallel” to their surface,
viz., in n orthogonal directions.

Strange attractors can occur in continuous-time
dynamical systems (e.g., systems of ODE’s) only for
d = 3. They are also attracting in d — n independent
directions, like the attractor sets for asymptotically
(quasi-) periodic solutions. Their strangeness derives
from the fact that they are highly unstable in the n
directions in their own “surface.” Thus trajectories
starting anywhere in phase space fall onto the at-
tractor. Afterward, however, they are repulsed from
any point on the attractor they are close to, and
therefore from each other. This leads to a perpetual
irregular wandering within the attractor set.
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TABLE 4. Spectral peaks for model solutions obtained with
different lag parameter values (compare Figs. 4 and 5).*

Period of Period of Period of
T main peak second peak third peak
(years) (years) (years) (years)
500 1170 (fo) 590 (2fo) —
750 1690 (fo) 560 (3fo) 280 (6f0)
1000 2200 (fo) 730 (3fo) 550 (4fo)
1500 3200 (fo) 1060 (3fo) 640 (5f0)
5000 10 240 (fo) 3420 (3fo) 2050 (5fo)
10 000 20 000 (fo) 6800 (3fo) 4060 (5f0)

* The peaks, in order of height above the continuous back-
ground, are determined from the spectral density function, using
various filter parameter values (see Appendix B for details). They
are very stable to changes in these values. Next to each peak, the
dominant (f,) or approximate harmonic (kfo) is marked.

Rising of the background noise around pre-exis-
tent spectral peaks is typical of the apparition of a
strange attractor in a dynamical system (Ruelle,
1980) and of the onset of turbulence in a fluid (Gol-
lub and Benson, 1980; Libchaber and Maurer, 1980).
We conjecture, therefore, that our climate model
equations (4)-(6) exhibit a strange attractor. A
strange attractor for a relatively simple ODE with
a discrete delay was studied recently in great detail
by Farmer (1982). The changes in their solution’s
spectra (ibid., Fig. 3) with = are very similar to ours.

The almost pure red-noise spectrum, with a log-
log slope of (—2), to the right of f, in Fig. 5f is typical
of well-developed turbulence. It is interesting to no-
tice, however, that the time evolution of the corre-
sponding solutions (Figs. 4e, 4f) is relatively smooth
in shape, with the size and location of the spikes only
being irregular. This might point to a geometric
structure and stability properties of the strange at-
tractor somewhat different from those previously
studied.

4) LARGE-AMPLITUDE, IRREGULAR BEHAVIOR

So far only those solutions were discussed for
which the associated trajectories lay entirely within
the cauldron of the potential (7) whose minimum is
at T = T,(x). We turn now to a discussion of other
types of behavior for solutions originating in the
cauldron around climate 3.

The initial data segment in this case for 0 < ¢
27 was T(x, t) = Ty(x), @ = a(T5; 0, 0). For ¢
27, delay effects were introduced by letting «
o*(T*; 1, o). Depending on the values of 7 and

v A

F1G. 5. Power spectra of the time series in Fig. 4. Both axes are logarithmic, with the abscissa marked for convenience, at the bottom,
in the periods corresponding to the given frequency at the top. Figs. 5a-5f are each the spectrum of Figs. 4a-4f. The dominant peak
in each figure is fo = fo(r, 0) = 1/(27). The additional peaks to the right of f, are its harmonics kf,. A change in the character of
the spectrum appears in Fig. 5d; this change is typical of transition from quasi-periodic to non-periodic oscillations. In Fig. 5f, the
general slope of the spectrum to the right of the dominant peak is —2. Units for f are cycles per year.
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3, are also possible.

N

g, oscillations obtain around climate 1, climate 3, or
between both.

For 7 > 7, and small values of o, ¢ < o,(7) the
solution jumps from the cauldron around 73(x) to
that of T,(x), and executes a sustained oscillation
around T'(x), as described above (Fig. 4). As ¢ is
increased beyond o,(7), solutions starting at T3(x)
tend asymptotically to T,(x), as was the case before
whenever ¢ = o.(7). The new feature here is that,
for 7 large enough, r > 7,, and for ¢ > a5(7), the
solutions 'exhibit large-amplitude, very irregular os-
cillations in which they alternate between the two
cauldrons (Fig. 6). This behavior prevails for a wide
range of g, 65 < o-< a3(7). For ¢ still larger and
sufficiently large 7, there is a further possible type
of behavior, with solutions oscillating around T3(x)
with very small amplitude, 4 = 0(0.1 K). The values
of a1, 02 and o3 are given in Table 5, for three values
of 7.

All these types of behavior are stable for pertur-

TABLE 5. Threshold values of ¢ for which model solutions
starting near climate 3 change character.*

T 4] a3 a3
(years) (years) (years) (years)
500 40 — —
1000 200 675 1400
1500 625 625 2100

*For 0 < o < ¢y(7), small-amplitude oscillations [O(1 K)]
around 7'(x) occur (Fig. 4). For o, < ¢ < 0,(7), model solutions
tend asymptotically to 7,(x). No other behavior occurs unless 7
is large enough, 7; < 7. Clearly one has 500 < 7, < 1000 years.
For o, < ¢ < 03(7), large-amplitude oscillations (Fig. 6) between
climate 1 and climate 3 occur. Finally, for ¢; < o, small-amplitude
oscillations [O(0.1 K)] around T;(x) occur.

bations of the initial data segment 0 < ¢ < 27, T'(x,
t) = Ts(x) + 0(x), where 6(x) can be a constant or
a random function of x, for |6(x)] < 2 K. To discuss
these types of behavior and compare them with those
before, we return to the variational interpretation
(7) of Eq. (4).

5) GEOMETRIC INTERPRETATION OF OSCILLA-
TIONS

In Section 4a we considered the consequences of
introducing delays into a dynamical system whose
attractor set is made up only of isolated equilibria.
It was shown that for a system with a single stable
equilibrium, a delay can introduce an inertial effect
which destabilizes the equilibrium, leading to oscil-
lations around it.

The structure of the dynamical system governed
by Eqgs. (4)-(6) is considerably richer than Eq. (9).
Still the presence of the variational principle (7) al-
lows a heuristic interpretation of results by drawing
on the analogy with the Lagrangian mechanics (14)
for Eq. (13). It is useful in the present discussion to
recall also the geometric interpretation in Section
3b for the results of the model without delays. In
the following, we shall call the cauldron of (7) around
T\(x) cauldron A, and that around T5(x) caul-
dron C.

It appears, even in the presence of delays, that all
trajectories starting in cauldron A tend asymptoti-
cally to 7T,(x). For the linear ODE (9), the stably
decaying or steadily oscillating character of solu-
tions depended only on the value of the discrete
delay 7, and not on the initial energy &, = {¥*(0)
+ u*(—7)}/2. On the other hand, the oscillations
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were structurally unstable, since they obtained only
for r = w/2.

For our nonlinear PDE (4) with distributed delay
given by (6) as a function of (7, o), oscillations seem
to depend both on the parameter values and on the
initial data segment (T(x, t), a[x, T(x, t)] for O
< t < 27. They are structurally stable, since the ex-
istence of the oscillations persists and their character
changes smoothly over wide ranges of (7, o). Such
stabilization by nonlinearity has already been alluded
to in Section 3b and is common in the theory of
nonlinear vibrations.

The oscillations around T;(x) obtain for a whole
range of distributed delays (7, o), but their initial
“energy” has to be high: the initial data segment has
to be in cauldron C. Indeed, the pass, or saddle point,
between cauldrons A and C is at the point T,(x).
We saw that both initial data with T(x, 0) = T,(x)
+ Ty, —10 K < T, < —-7.5 K, and initial data around
Ti(x), T(x, 0) = T3(x) + 8(x), |0(x)| < 2 K, resulted
in trajectories crossing into cauldron A, where they
either performed sustained oscillations or decayed to
T(x), according to the value of (7, o). We have not
studied the precise shape of cauldrons A and C, nor
the neighborhood of the pass T,(x), but T, ~ 281.7
K~ T, + 87K ~ T, — 49 K (Table 3). The
interpretation that initial data have to be beyond the
pass for oscillations in cauldron A to obtain is there-
fore rather plausible.

The oscillations within cauldron A were stable for
perturbations in their asymptotic regime, T'(x, ;)
= T(x, t) + 0(x), and 6(x) = T, < —7.5 K, in ac-
cordance with the discussion for initial data. When
6(x) was a random function of x, stability depended
on the mean and variance of 8. Results were again
consistent with the idea that perturbations which
took the trajectory sufficiently far, beyond the pass
and into cauldron C, lead to renewal of the oscilla-
tions. Perturbations which involved a restart within
cauldron A lead to a trajectory which eventually
decayed to Ty(x).

The behavior of solutions starting at T5(x) or near
it which, for a certain (7, o) range, alternate between
cauldron A and cauldron C is also mathematically
interesting. They correspond to climate variations
which are unrealistically large. Similarities exist,
however, with solutions of the Lorenz (1963) model
and of other dynamical systems with strange attrac-
tors. Hence their study might help the understanding
of the more unusual strange attractor lying entirely
within cauldron A. This study might be facilitated
by the presence of the variational principle (7), not
available for the Lorenz system or other known
strange attractors, and by the geometric interpre-
tations of some aspects of trajectories which it per-
mits.

As a first step in investigating the connection be-
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tween the large-amplitude and small-amplitude ir-
regular oscillations, we considered solutions for a
different value of . In Section 3b, the changes in
the potential J{T(x); p} with p were described.
Cauldrons A and C coalesce for a value of u = puy;
at this value, one would expect all small-amplitude
oscillations occurring asymptotically within cauldron
A, as well as the large-amplitude oscillations between
cauldrons A and C, to disappear.

Numerical experiments were performed for u
= uy = (1 + p)/2, half-way between the present-
day insolation conditions, 4 = 1, for which all other
experiments were made, and u = u,, at which all the
trajectories which spend all or part of the time in
cauldron A would disappear.

One experiment was done with g = u,, the same
parameter values as the one plotted in Fig. 4c,
7 = 1000 years, o = 100 years, and the same initial
data. The same type of small-amplitude, regular os-
cillation around T,(x) obtained. Its peak-to-peak
amplitude in global temperature 7(z) was A = 1.22
K, as compared to 4 = 0.83 K (cf. Fig. 3) for
p = 1. Results with other initial data in cauldron C
were identical; they changed only very slightly when
the lag parameters were modified a little, ¢ = 60
years and the same 7, for instance.

In other words, the flattening of the bottom of
cauldron A has a tendency first to increase the am-
plitude of the periodic oscillations, without changing
their character. This increase in amplitude as u de-
creases is in agreement with the prevailing intuition
that glaciation cycles have higher amplitude when
the global ice volume is higher on the average (Killén
et al., 1979). As the insolation decreases, u < 1, the
average temperature 7, decreases, and the ice vol-
ume increases correspondingly.

Next an experiment was performed with u = u*,
T = 1500 years, ¢ = 1000 years and initial data near
T;(x). Large-amplitude, irregular oscillations result
(Fig. 7a). The general character and the amplitude
of the oscillations is similar to that for u = 1 (Fig.
7b). Notice, however, that two warm spikes are al-
ways present next to each other in Fig. 7b, somewhat
like that in Fig. 6. In Fig. 7a, the pairs of spikes are
replaced by a single warm spike, and the system
spends more time in cauldron C than in cauldron A.

These results are merely indicative of the possible
changes in the shape and nature of the attractor set
as p is varied. A detailed, exhaustive study would be
interesting, but beyond our purpose here.

5. Discussion and conclusions

We have presented a simple energy-balance, Sell-
ers-type climate model (EBM), in which a crude
parameterization of the albedo effects of storm tracks
along the ice margin was attempted. The model is
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F1G. 7. Comparison of large-amplitude, irregular oscillations for two
values of the heating parameter, 4 = p, (Fig. 7a) and u = 1 (Fig. 7b,
see text for details). The oscillations are quite similar, but when u is
lowered below its present-day value, g, < 1, the time the system spends
at lower temperatures is increased. Lag parameter values are 7 = 1500

years, ¢ = 1000 years in both Figs. 7a and 7b.

governed by a nonlinear, parabolic PDE for zonally-
averaged surface temperature T as a function of time
t and colatitude ¢, T = T(¢, t). The main nonlin-
earity is related to the albedo-temperature feedback,
a = alx, T(x, 1)).

This nonlinearity results in EBM’s exhibiting a
multiplicity of steady states, at least two of which
are stable: one corresponding to the present, observed
climate of the Earth, with a globally averaged tem-
perature T, =~ 287 K; the other to a completely ice-
covered Earth, Ts = 175 K (Held and Suarez, 1974;
North, 1975; Ghil, 1976, 1981a). As a result of the
albedo increase produced by cloudiness in the intense
baroclinicity belt equatorward from the ice margin,
the present model exhibits an additional stable
steady state, with T; ~ 273 K, lying between the
“present” climate, T, = T,(¢), and the “deep-freeze”
Climate, T5 = T5(¢).

In order to study long-term climate variability, on

the time scale of 10°-10° years, the lag of ice-sheet
extent and hence of albedo with respect to temper-
ature (Killén ez al., 1979; Ruddiman and Mclntyre,
1981) was introduced in the simplest way, as a dis-
tributed time delay in the governing equation, which
thus becomes a functional or delay-differential equa-
tion. The combination of time-delay effects and of
the relative closeness of the stable steady states T,(¢)
and T5(¢) leads to very interesting model behavior.
We suggest that system behavior of similar type can
explain certain features of the observed spectrum of
climatic variability on various time scales.
Observed spectra of climatic variance against fre-
quency (e.g., Kutzbach and Bryson, 1974) have as
their most striking features peaks of various band-
widths and heights on a red-noise background.
Mitchell (1976) provided a tentative explanation for
these two main features: the red-noise background
was attributed to internal stochastic mechanisms,
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whereas the peaks were attributed to external deter-
ministic forcings. The simple generation of red noise
by filtering white-noise input through a stable linear
system was discussed by Hasselmann (1976) and
Fraedrich (1978), among others.

The ratio in which variance is distributed between
the continuous part of the spectrum and the peaks
is uncertain, with estimates varying widely in each
frequency band. Hays et al. (1976) assume that ali
the variance in the peaks between 10° and 10° years
is due to orbital forcing only, with the result that
80% of the climatic variance within this band is in
these peaks. Kominz et al. (1979), using cross-cor-
relation spectra, have concluded that less than 25%
of total variance in the same band is due to orbital
forcing; the rest has to be due to other causes, which
they assumed to be stochastic. A different interpre-
tation for the superposition of broad peaks on a red-
noise background can be given using the present
model’s results.

The model exhibits self-sustained oscillations
without any variation in the external forcing, which
is taken as the yearly averaged, constant solar in-
solation. These oscillations are due to the interaction
between the model’s heat capacity and its delay ef-
fects, coupled through the nonlinear ice-albedo feed-
back. The character of the oscillations changes as
the ratio of the main delay time 7 and of the relax-
ation time 6, governed by the heat capacity C,, 7/
6, changes. The existence and nature of the oscilla-
tions, quasi-periodic or aperiodic, also depends on the
ratio of the distributed delay’s half-width ¢ to its
median value 7, o/7.

Oscillations with an amplitude A4 of approximately
1 K in global temperature T occur in the neighbor-
hood of model climate 1, for a large range of 7, 1000
< 7 < 3000 years. This is a reasonably realistic am-
plitude for Pleistocene glaciation cycles (CLIMAP,
1976). The plateau of near constancy in A = A(t)
over the given range might be due to a phenomenon
of phase-locking (Gollub and Benson, 1980; Lib-
chaber and Maurer, 1980).

These oscillations do not appear when “warm”
initial data, near the present climate or warmer, are
used, or when correspondingly warm perturbations
are applied to the oscillations once established. This
is in accordance with the currently held belief about
the absence of significant climatic oscillations during
the relatively warm periods of the Earth’s past.

In most previously studied EBM’s, without cloud-
albedo feedback and without delay effects, climatic
evolution is restricted to the immediate vicinity of
either stable steady state. Only large decreases of
mean annual insolation can lead to a transition to
colder climates, and a warming of the “deep freeze”
is not possible with reasonable amounts of radiative
energy. Within the present model, transitions from
the colder stable climate T5(x) to the vicinity of the
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warmer, present climate 7,(x) are possible. Depend-
ing on the values of the delay parameters = and ¢
a system state near climate 3 can lead to a climate
evolution which either remains close to climate 3, or
crosses over to the neighborhood of climate 1. The
further evolution can, depending again on 7 and o,
be either oscillation around or decay to climate 1.

The self-sustained oscillations around the present
climate change in character from quasi-periodic to
irregular, chaotic when 7 increases beyond 3000
years, with some increase in amplitude. The Fourier
spectrum of the quasi-periodic oscillations shows a
number of high, narrow peaks on a low background
noise. The dominant peak occurs at a frequency f
= fo which is approximately equal to 1/(27), with
a number of harmonics to its right.

The transition to aperiodicity is accompanied by °
a general rise of the continuous part of the spectrum,
with broadening and merging of most peaks. For
= 5000 and 10 000 years, only a few broad peaks on
a very clear red-noise type spectrum remain. Indeed,
in these figures, the log-log slope of the continuous
spectrum to the right of the dominant, and down to
a periodicity of 10 years, is —2. This might indicate
a relatively low predictability of climate on the de-
cade-to-century time scale. Such a conclusion, if at
all true, needs further verification by models incor-
porating a host of mechanisms with potential im-
portance on these time scales, which were not in-
cluded in the present model.

The range of 7 for which moderate-amplitude,
quasi-periodic as well as chaotic, model behavior
obtains, seems to include values in agreement with
both theory and observations. Phase lags between
temperature and albedo which result when modelling
explicitly ice-sheet response to energy balance (Kiil-
1én et al., 1979; Ghil and Le Treut, 1981) are of the
order of 2000-3000 yr. Paleoclimatic data (Ruddi-
man and Mclntyre, 1979, 1981) give slightly higher
values of the order of 3000-5000 years. These dis-
crepancies are well within the inaccuracies to be ex-
pected from relatively simple models and incomplete
proxy data.

Considering the model’s crudeness, the general
similarity between the character of the spectra in
Fig. 5 and of the spectra of paleoclimatic proxy data
(Hays et al., 1976, Fig.-6) is rather striking. Clearly,
quasi-periodic orbital forcing on these time scales
plays a role in climatic variability (Le Treut and
Ghil, 1982), and so do numerous small-order effects
which can be modeled collectively as white noise.
Our results point to the potential contribution of sim-
ple deterministic nonlinear interactions between the
most important mechanisms within the atmosphere-
ocean-ice system to both the peaks and the contin-
uous background in the climatic spectrum. The de-
tailed study of simple models, selective confirmation
of their results with more complex ones, and verifi-
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cation by more refined data can confirm, modify or T = T(x) is the data climate and ( )

invalidate qualitative hypotheses like the one sug-
gested by this study.
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APPENDIX A
Numerical Methods

a. Steady-state solutions

We outline first the numerical techniques used for
computing steady-state solutions of Eq. (la). Eq.
(4), with 8T /dt = 0, is solved subject to boundary
conditions (5a,b). Details of the procedure for these
steady-state computations appear in Ghil (1976).

The steady-state equation, after some rearrange-
ment, can be written as a two-point boundary-value
problem for the system of ordinary differential equa-
tions:

T,=v,

(cot

(Al.a)

™

2

o _(I)Z F(x, T)

w_x)v
2] k(x, T) 2

_ ki) ki0e(T)
k(x, T)
RiTea e O<x<1, (Alb)
. v(0) = v(1) = 0.

(A2.a,b)
Here .

k(x, T) = ki(x) + ky(x)g(T), . (A3.a)
Fx, T) = pQ(x){1 = b(x) + ¢,
X [T, + (T — c2z(x) — Trp)-1}c
— 6T*[1 — mtanh(c;T)], (A3.b)
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a( )/dx.
The numerical method of “shooting” (Isaacson and
Keller, 1966; Keller, 1968) was used to solve the
boundary-value problem (A1, A2): Egs. (Al.a,b) are
solved with initial conditions

v(0)=0, T(0)=T,. (A4.a,b)

The solution of the in\itial-value problem (Al, A4) .
is denoted by T(x, Tb), v(x, To). Those values of T,
which satisfy

W1, To) =0 (A5)

were next obtained by iteration. For these values of
T,, the solution T(x, Ty), v(x, To) of the initial-value
problem (A1, A4) is a solution of the boundary-value
problem (A1, A2). Since cot(wx/2) — oo as x — 0,
Eq. (Al) is singular at the origin. The numerical
difficulty arising from this singularity can be circum-
vented by using a variable-step method.

The initial-value problem (A1, A4) is solved to an
accuracy of 1077 using a variable time-step, variable-
order, multi-step numerical scheme. The zeroes of
v(1; To) are found to an accuracy of 107 using the
method of false positions or regula falsi (Isaacson
and Keller, 1966). See Table 3 for solutions.

b. Time-dependent solutions without delay effects

We next describe the numerical method used to
determine time-dependent solutions for the present
model without time delays. The governing equation
is Eq. (4), with a = a(T; 0, 0), solved subject to
initial and boundary conditions (5a,b,c). Eq. (4),
with K(x) = sin(wx/2)k[x, T(x)], can be written as

1 2\? 1
=c» [(;) sin(rx/2)
X {K(x)T,}. + F(x, T)], (A6.a)

where subscripts denote partial derivatives with re-
spect to the appropriate variables, and

F(x, T) = pQ(x)}{1 — a(x, T)} + «(T)oT*

is given by (A3.b).

Let Ax and Ar be increments of the variables x
and 1, where Ax = 1/(M — 1), M being the number
of spatial grid points used for computation. The
set of points (x; #,) in the (x, r) plane given by
x;=(j— 1)Ax, t, = nAt, where j = 1,2,3,..., M
andn=0,1,2,...,is the grid on which the finite-
difference form of (A6) was computed by the time-
marching procedure to be described below. The pole

(A6.b)

" and the equator correspond to j = 1 and j = M,

respectively. The approximation to T(x;, ¢,) is de-
noted by T'}. The method closely follows the Crank-
Nicholson scheme for nonlinear parabolic equations
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as given in Richtmyer and Morton (1967, Chap. 8).
It represents a considerable improvement in both
accuracy and computing time over explicit schemes.

Using straightforward finite-difference approxi-
mation, Eq. (A6) is written as

M -T) (2)2 IS N
At x) . [7!'(_] - l)]
sm| —————
2(M-1)
KA TR = TJ) = K, oplT7" = T
2C,-(Ax)2

) g

20M—1)
X Kj+1/2(T}'+1 - T}’) _ Kj—l/z(T}' - T}'—x)
2C{Ax)? :
L Fx, T}) + Flx,, T3 (an
2

where C; = C(xj). In Eq. (A7), the error terms orig-

inating from the finite-differencing have been’

dropped, leading to an error of O{(Af)* + (Ax)*} in
the approximate form (A7) of (A6). In other words,
(A7) is a second-order accurate approximation to
(A6). The numerical treatment of the nonlinear term
arising from F(x, T) will be described later. This is
where our scheme differs slightly from the method
in Richtmyer and Morton (1967, Sec. 8.5).

The linear terms in (A7) include values of T at
g = n, as well as at ¢ = n + 1. To advance in time
from ¢ = nto g = n + 1, we have to find {T7*', j
=1,2,..., M}

Rearranging the linear terms in (A7) so that all
T;values at ¢ = n + 1 are on the left-hand side, and
denoting the remaining right-hand side by Dj"*', we
obtain

Ti(=YKjs12) + T7 (4 + Ko + v,K12)
+ TN =Y Kj-12)'= D™, (A8)

where

y, = A (3)2 1
‘e axy\x) L[ G-DTYT’
A0 sl )

The system of linear equations for the T7*' repre-
sented by Eqgs. (A8) is clearly tridiagonal. However,
before the standard techniques for solving a tridi-
agonal system of simultaneous linear equations can
be applied, the system of equations (A8) has to be
arranged in such a way that the coefficient of 77
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in the first equation and the coefficient of T3 ' in the
last. equation vanish. This is very easily done with
the help of the boundary conditions (Collatz, 1960,
p. 264; Schneider and Gal-Chen, 1973):

- T, =(4T, — T3)/3 }
Ty= 4Ty, — TM—z)/3 ’

where the superscripts n + 1 in T}*! are omitted as
self-understood.

Eqgs. (A9) are actually the second-order accurate
finite-difference form of the requirement that heat
fluxes vanish at the pole and also at the equator, i.e.,

Tdx,1) =0, (5a,b)

for all values of time ¢. The tridiagonal system of
simultaneous linear equations (A8) can be solved at
each timestepg =n+ 1 toobtain T, T, . .., Tars,
Ty, by Gaussian elimination and back substitution.
" Solving the tridiagonal system of simultaneous lin-

(A9)

at x=0and x =1,

‘ear equations (A8) provides an exact solution

{T7'} of Eq. (A7) only if the right-hand sides
D™ of the equations in (A8) are actually known,
independently of the T;*"s. However, a comparison
of Egs. (A7) and (A8) shows that each D}"*' is the
sum of a linear part L] given by

L;' = T}' + ’YjKj+1/2(T:+1 - T}')
- ’YjKj—l/z(T}' - T}'—n), (A10.a)
and of a nonlinear part G}"*' given by

G'-""+1 — _1_

Yol

where F{ = F(x;, T?).

Due to the presence of the nonlinear part, a pre-
dictor-corrector approach was adopted in going from
one time step to the next. For each iteration at a
given mesh point, the known linear part was kept the
same. The nonlinear part was iterated upon until a
given convergence criterion was achieved; the crite-
rion chosen was that the absolute error in temper-
ature at each mesh point not exceed 107°, Specifi-
cally, the predictor equation used was

T? = T} + v {(KT )7 + (KT,), 18} + AtF7, (All)

(Fr+ Fr),  (Al0.b)

and the corrector equation was

+ WAKF? + F?). (Al2)
Here (KT,),l{, ¢ =n, p, c, is expressed by central
differences, as in (A7). Both (Al11) and (A12) are
rearranged as in (A8), resulting in tridiagonal linear
systems for {77} and {T'j}, respectively, with known
right-hand sides.

After obtaining T5, T4, ..., T4, for the new
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time step from (Al11), T¢ and T4, were obtained
using the boundary conditions (A9). This procedure
was repeated for {T§:j =1, 2, ..., M}, using both
(A12) and (A9), for the correction step. If the dif-
ference between T'; and T'7 satisfied the convergence
criterion, we set T7*' =T, j=1,2,..., M. Oth-
erwise, the correction step was repeated until con-
vergence was achieved. Usually, not more than one
or two correction steps were needed. When temper-
ature variations were rapid, however, as many as 10
or 15 iterated corrections might be needed for the
criterion to be satisfied. ’

For all time-dependent computations, a spatial
grid size of 5° latitude was chosen after some nu-
merical experimentation. For this grid size, each
steady-state solution, when interpolated to the grid
for time-dependent computation and used as an
initial state, gave an asymptotic temperature distri-
bution which is within 2 K of the original steady-
state solution (Table 3). Furthermore, the compu-
tational effort for this grid size was not excessive.

The time step Ar was chosen to be five years. Here
some experimentation was also necessary, because
numerical instability of a nonlinear nature occurs for
higher values of At, before the linear instability
threshold is reached. This nonlinear instability man-
ifests itself first at the boundaries, and propagates
into the interior of the interval. It does not appear
for the chosen values of At.

¢. Time-dependent solutions with time delays

When time delays are introduced [a = a*(T*; 7,
o), v # 0] Eq. (4) becomes a functional, or delay
differential equation (FDE or DDE). Such delay
differential equations can be solved by the usual
method of solving the corresponding ordinary or par-
tial differential equations (Driver, 1977), except that
in this case one has to specify an initial function over
a finite time interval, rather than an initial value at
a single instant. ‘

For the present work, this initial function was not
naturally specified in the problem; therefore, it had
to be generated. This was done by carrying out the
computation from ¢ = 0 to ¢t = 27 with the albedo
being determined by the present temperature (no
delay), and using the computed temperatures to build
up a “tail” which is 27 time units long. This “tail”
then provided the lagged temperature for all ¢ > 27,
and was updated for all ¢ > 27. The computation of
solutions proceeded in all other respects as before:
the only modification appears in evaluating F7 and
F%in (A7)-(A12), using o*(T*) rather than (7).

APPENDIX B
Spectral Analysis of Solutions

The need to estimate the power spectrum of a sta-
tionary stochastic process from a finite-length record
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of a single realization arises in many applications
(e.g., Blackman and Tukey, 1958; Jenkins and
Watts, 1968). Depending on the area of application,
the characteristics of the time series analyzed and
the information required, various practical methods
of harmonic analysis have been devised and tested.
The purpose of this appendix is to clarify two points:
1) why this body of knowledge is relevant to the
analysis of solutions to a deterministic model, and
2) which particular spectral analysis method was
used in the present work. The second point is rela-
tively trivial and included for documentation only;
the first point is considerably deeper and one can
only outline here its resolution.

a. Deterministic and stochastic time series

We start with a brief recapitulation of basic facts,
following Hannan (1960, Chap. 1). It will shed some
light on both the points to be clarified. For details
we refer to the literature.

Consider a finite, periodic sequence of random
variables {x/(w): 1 =0,1,2,...,n— 1}, w labeling
the realization and n the period, i.e., x,.,(w) = x(w).
This is the simplest possible stochastic process. The
general case of a discrete-time stochastic process is
obtained when n — oo, i.e., when the index ¢ can be
any integer. For a continuous-time process, ¢ is any
real number. These general cases present technical
difficulties which will not be discussed.

The process {x(w)} is assumed to have zero mean,
finite variance and to be stationary, i.e., for all # and
S,

E{x(w)} =0, / (Bl.a)
E{xX(w)} < oo, ] - (Bl.b)
E{xr+s(w)xt(w)} = Rs 3 ’ (Bl'c)

with the covariance R, depending only on the sepa-
ration s and not on the particular time ¢. Here E is
the expectation operator or ensemble average over
all realizations w.

We define the time-shift operator U by

Ux(w) = xt+1(“’)~ (B2)

One introduces a vector space V in which the se-
quences {x,} live, and an inner product of sequences
(Courant and Hilbert, 1953, Chap. 1) by taking the
expected value over w of the usual scalar product
over indices ¢. Thus the orthogonality in V of the two

_ sequences corresponds to their being probabilistically

uncorrelated.

It is easily seen that, in the vector space V, the
operator U is unitary: its adjoint is its inverse, and
all its eigenvalues {v: j = 1, 2, ..., n} are therefore
on the unit circle. More precisely, they are the roots
of unity:

v, = exp{2wij/n}, (B3)

where I is the imaginary unit. The eigenvectors are
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mutually orthogonal, and we let P, be the orthogonal
projection onto the jth eigenvector.

Dropping for convenience the dependence on w,
one has

n

= U,X() = Z V}Pon . (B4.a)
1 .
It is thus natural to let "
Z;= Px, , (B4.b)

so that the inner product of Z; and Z, is
(Z,Z,)=0, j#k (B4.c)

In terms of these uncorrelated {Z;}, the covariance
function R, becomes

R, = z l/j’Sj N (B4'd)
1

where
S;=(Z;, xo) = E(1Z}*) = 0 (B4.e)

To suggest the more general cases, we write
B O TS N (B5.a)
Z() =2 Z;, (B5.b)
Fp)=2S;, (B5.c)

where all the sums are taken over those j which
satisfy 2mj/n < » + =. Notice that, due to (B4.e),
F(v) is monotone increasing. With this notation, one
obtains the spectral representations

C U= f_ " e dP(y), (B6.2)

X, =f erdZ(v), (B6.b)

S

R, = f evdF(v),

(Z(v), Z(v)) = F(»),
[Z(v) — Z(v2), Z(v3) — Z(vy)] = O

for », =

(B6.c)

(B6.d)

(B6.¢)

In the elementary case of a periodic sequence {x,:
t=0,1, — 1}, Egs. (B6) are just a rewriting
of (B4) wnth the notation (B5). The point is that
(B6) still holds for the general discrete-time sto-
chastic process; in the continuous-time case of ran-
dom functions on the real line, the limits of integra-
tion must be changed from +x to +co.

Thus, in all cases, the Fourier-Stieltjes transform
(B6.b) of the stochastic process x, itself is connected
via (B6.d) with the spectral decomposition (B6.c) of
its covariance function R, into “independent oscil-
lations,” cf. (B6.¢). They are both based on the spec-
tral representation (B6.a) of the unitary shift oper-
ator U.

For deterministic processes, the label w, which

V> v32 0.
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characterizes a realization of the process in the sto-
chastic case, can be replaced by the initial state, 7
(¢t =0) say. Ensemble averaging over realizations
w is replaced by averaging over possible initial states.
An individual time series segment will still look, for
a complex deterministic evolution law, as different
from another segment of the same series, or from a
time series evolving from another initial state, as if
it were random. Still, all time series, independently
of T(0), have certain things in common.

‘To capture the common features of all individual
evolutions of a deterministic process, one defines an
appropriate shift operator, similar to (B2). The prop-
erties of such shift operators, in both deterministic
situations and probability spaces, are the object of
ergodic theory [see, e.g., Moser (1973, Sec. 1.4 and
Chap. 3) for the connection between the two cases,
and Hannan (1960, Sec. 2.2) for more details on the
probabilistic case]. In particular, the spectral rep-
resentation of the deterministic shift operator leads
to the spectral analysis of the associated time series,
in a manner entirely analogous to the situation for
stochastic processes described above.

Intuitively, the deterministic picture is the follow-
ing. All initial data lead, after a certain time interval
of transient behavior, to a trajectory lying on the
attractor set. When this attractor set is a limit cycle,
trajectories only differ by their phase along the cycle.
Thus, one can define an invariant measure, or “prob-
ability density function,” on the limit cycle, and the
situation is quite analogous to that described by Egs.
(B1)-(B4). The precise probability density on the
limit cycle will depend on the distribution of initial
data which lead to a particular phase of the limiting
trajectory.

When the limiting solutions are quasi-periodic,
rather than purely periodic, one defines a probability
density on the torus which constitutes the attractor
set. Again, the relative “weight” of various portions
of the surface of the torus depends on which initial
data are attracted to that portion of the surface. The.
limit cycle case and torus case cover the situation in
Figs. 4a-c.

When the attractor set is strange (Figs. 4e, 4f),
the situation is somewhat more complex. Indeed,
strange attractors have a complicated geometry
(Lorenz, 1963; Ruelle, 1980): they are made up of
infinitely many “sheets” packed close to each other,
like onion skin, and “sown together” along common
edges. The effort to define appropriate invariant
measures for them is currently under way (Graham
and Scholz, 1980). In the following, the language of
random time series will be borrowed for convenience,
since it is more familiar; only occasional references
will be made to the deterministic situation at hand.

b. Spectral windows

We are ready to turn now to the details of the
spectral analysis of model solutions. First, the non-
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decreasing, deterministic function F(v) of (B6.¢) is
more convenient to work with than the random func-
tion Z(», w) of (B6.c). In most cases of practical
interest, F(v) can be decomposed into two parts

F=F +F,; (B7.a)

a continuous part

F(v) = f” S(v)dv,

and a pure-jump part F,(v), constant save for jumps
at discrete frequencies v;. If only F, is present the
process has a discrete spectrum, given by {v,} and
the associated jumps {F(»,+) — F(v,—)}. If only F,
is present, the process has a purely continuous spec-
trum with spectral density S(v). In ours, as in most
cases, the spectrum is mixed. Moreover, based on a
finite-length time series with limited resolution, pure
jumps are hard to identify and become translated
into more or less sharp peaks of the spectral density
(recall that the derivative of a Heaviside step func-
tion is a Dirac é-function). It is customary, therefore,
to deal, for all processes having absolutely-integrable
covariance R,, with the spectral density S(») only.
We shall do so in the sequel [but see also Hannan
(1960, Sec. 4.1)].

The Bochner-Khinchin theorem states that, in the

(B7.b)

general discrete-time and continuous-time cases, the
covariance function R, has a Fourier-Stieltjes trans--

form dF(v). In particular, in the continuous-time,
continuous-spectrum cases which we consider, it fol-
lows that the true spectral density of the process,
which we shall devote by S(»), i.e.,

. 1 ®
SW) =— f e ™ Rds,

2T (B8)

is non-negative since F(») is nondecreasing.

Given a realization of the process x{(w), and a
record of it of length L,-one can compute a sample
correlogram R,(s) and its Fourier transform S,(»).

The unfortunate fact is that the sample periodogram:

Si(v) is not a consistent estimate of S(), i.e., it is
not true that

S, (v) — S(v) as L — oo. (B9.a)

That is, (B9.a) does not hold in general in any sense
of probabilistic convergence (Hannan, 1960, Chap.
3; Parzen, 1961) for all frequencies, neither in mean
square, nor in probability or in distribution.

In practice, a periodogram taken from one real-
ization of a stochastic process and from another one
will be widely different. For a given realization, or
time series, the periodogram S;(v) will show large
dispersion at every frequency as L is increased, with
no signs of convergence. The same statement holds
for sufficiently complex deterministic time series,
with which we are concerned here, i.e., large dis-
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crepancies between a periodogram S, (v) of the series
and its actual spectral density S(») occur, no matter
how long L is.

Fortunately, it is true that R, is a consistent es-
timate of the true covariance function R, i.e.,

lim E{|R.(v) — R(»)*} = 0, (B9.b)
Prob{lim R,(v) = R(»)} =1,  (B9.c)

both hold. Moreover, one can show from (B9.b,c)
that situation (B9.a) can be remedied by introducing
an averaging kernel K;(»). In fact, for any bounded
continuous kernel K(»), the spectral average estimate
Si(v; K),

Si(v; K) = f_ N K(»)SL(u)du, " (B10)

tends to S(v) as L — oo, both in mean square [as
in (B9.b)] and in probability [as in (B9.c)].

Usually, the kernel K(») is chosen to be symmetric
about the frequency at which it has its (unique) ab-
solute (positive) maximum. This frequency is called
the peak frequency of the kernel K(v). Its bandwidth
B(K) is the length of the square with the height of
the peak and the same total area as K(v). Kernels
used in practice are largely concentrated near their
peak and are therefore also called a spectral window.
The bandwidth B(K) is essentially the resolution of
the spectral density estimate S;(»; K). The smallest
possible resolution of a spectral estimate S, can be
shown to be of the order of 1/L.

The smoothing of the periodogram S;(v) by a spec-
tral window K (») in the frequency domain is equiv-
alent to the smoothing of the correlogram R,(») by
the Fourier transform of K, (v), k.(s) say, in the time
domain. This k.(s) is the covariance averaging kernel
or lag window for short. We used the centered sample
covariance function ‘

R,(s)

lJ‘L—[sl T ’ _
L) ( (t+ISI’)— T, )(T(t) — T.), Isl < L

0, Is| = L,

(B11)

where T, is the mean value of the time series T(¢)

for0 << L.

_ Since T(t) is a real time series, its spectral density
- S(v) is an even function of v and the Fourier trans-

form in (B8) can be replaced by a cosine transform.

Therefore, the lag-averaged, normalized estimate of

S(v) we used was

- 2 L .
S,(v) = —ﬂ_—mj; cos(vs)k, ()R, (s)ds. (B12)
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The numerical method used to compute the integral
above follows Vulis and Monin (1979), in order to
avoid the problem of negative spectral estimiates;
unless suitable precautions are taken, this problem
occurs often in practice.

The lag window k;(s) = k. (s; M) due to Bartlett

is
1 — [s|/M,
. ki(s; M) = .
0, |s] =

it depends on the parameter M, where M is the max-
imum lag retained in the correlation R.(s)/R.(0).
It is easy to show that the use of the Bartlett filter
is equivalent to subdividing a record of length L
into = L/M segments of length M, calculating the
[ separate periodograms and averaging them to ob-
tain S,(»). ‘ A

The variance of the estimate S, (v) is inversely
proportional to the rate at which the filter k;(s) con-
centrates at the origin, i.e.,

L
2
Var[S.(»)] _fo ko (s)ds

S(») L ’
Using the Bartlett filter, one can reduce the variance
-of Sy(v; M) to equal %5(M/L) of the variance of the
“naive” periodogram S;. This would suggest taking

M as small, or / as large as possibie.
Unfortunately, an “uncertainty principle” obtains;
namely the product of Var(S,) and of the bandwidth
B(K.) is a constant: the accuracy of locating a spec-
tral peak and that of measuring its height have to
be traded off against each other. It is therefore cus-
tomary to do some numerical experimentation and
use different values of M. This practitioner’s art
is called “window closing” or “opening” (Jenkins
and Watts, 1968, Sec. 7.2). The limitation on band-
width resolution justifies now more rigorously the
earlier decision not to deal explicitly with the pure-

jump part F,(») of the spectral distribution function
in (B7).

Is| <M
(B13)

(B14)

¢. Technical details

The time series used were of various lengths. In
all cases, an initial segment was eliminated, so that
only the asymptotic behavior of the solution appeared
in the spectral analysis.

For the case 7 = 500 years (Figs. 4a and 5a), a
record extending from ¢ = 25 000 to 100 000 years
was used, so that L = 75000 years. For 7 = 1500
years (Figs. 4d and 5d), the record had the same
length, but started at ¢ = 50 000 years. For 7 = 750,
1000 and 5000 years (Figs. 5b, 5¢ and 5e), the rec-
ords started at 50 000 years and L = 150 000 years.
For 7 =10000 years (Fig. 5f), the record used
started at ¢ = 100 000 years and had L = 300 000
years.

K. BHATTACHARYA, M.

GHIL AND I. L. VULIS 1771

TaABLE Al. Confidence intervals [A4; (g, a), A; (g, a)]
for spectral density estimates.*

7 A logie4, A, logieA:
15 0.55 —-0.26 2.3 0.36
30 0.63 -0.20 1.8 0.26

* The values in the table correspond to a 95% confidence level,
or a = 0.05; u is the equivalent number of degrees of freedom of
a x,2-distribution (see text for details).

The time step used in sampling equaled in all cases
At =5 years. The Nyquist frequency fy therefore
equals f5 = Yo year™'. The frequency corresponding
to the maximum lag of the correlation function
equals to f,, = 1/M. Fig. 5 shows the spectral den51ty
estimates S;(v; M) between fy and 1072 year™ < fa;
for periods < 100 years, model assumptions become -
somewhat questionable. Notice that in the figure, as
in the main. text, we have denoted frequency by f,
rather than ».

The bandwidth B(K,(v; M)) for the Bartlett filter
is obtained by taking the Fourier transform of (B13)
and equals /M (Jenkins and Watts, 1968, Tables
6.5 and 6.6 and Fig. 6.11). In Figs. 5a-5¢, M = L/
5, while in Fig. 5f, based on a much longer time
series, M = L/10; thus 8 = 10~* year™' in Figs. 5a
and 5d, and 8 = 0.5 X 107* year™! in Figs. 5b, 5c,
5e and 5f.

In the logarithmic frequency scale of Fig. 5, the
bandwidth is interpreted as

log(v + Av) — logv = log((v + Av)/v)

= log(l + Av/v) =~ Av/v = B/v. (B15)
Thus the relative resolution improves toward higher
frequencies.

The accuracy of the spectral estimate at fixed »
is given by its variance [Eq. (Bi4)]. An important
statistical tool in the analysis of variance is the x,’
distribution for sums of squares of u independent
normal random variables. It can be shown that for
the perxodogram itself as a spectral estimator, 2S5,(v)/
S(») is distributed approximately like the sum of two
such squares, 0 = 2. For a rectangular (box-car) lag
window, the number of “degrees of freedom” u is

= L/M, exactly equal to the number of “inde-
pendent samples” (compare Leith, 1973). For the
Bartlett lag window, uS,;(v; M) /S(u) is. distributed
like x,* with the equlvalent number of degrees of
freedom p = 3L/M (Jenkins and Watts, Sec. 6.3.5
and 6.4.2, and Table 6.6).

Based on the cumulative probability distribution
F = F,(x) of the variable x = x,%, one can give con-
fidence intervals on S;(v) of the form
Prob{x,(a/2) < pSL(V)/S(V)

<x(1-a/2)=1-a (Bl6.a)

Here x,(v) refers to tabulated values of the solution
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to the equation F/(x)= Y- This solution is unique
since F,(x) is monotone increasing. Given the esti-
mate SL(v) the true spectral density S(») will then
lie with a confidence of 100(1 — «) percent between
A,S;(v) and A4,S.(v), where

L)

Al(ﬂ; a) - x“(l _ a/2) ’
L)

AZ(I"’ a) - x“(a/2) . (B16)

The narrowing of the confidence interval (A4,, A,) as
u and « increase is easily seen for instance in Jenkins
and Watts (1968, Fig. 3.10).

The application of these ideas to our model solu-
tions is justified by the fact that typical correlation
times for these solutions are much shorter than the
lag times M which were used. In Figs. 5a-5e, M
= L/5 and thus ¢ = 15; in Fig. 5f, M = L/10 and

= 30. The corresponding values of A4, and A, for
a 95% confidence level are given in Table Al. They
are also indicated in Figs. 5a-5f by a double arrow,
and hold uniformly for all frequencies.

The estimates of spectral density-in Figs. 5a-5f,
and of the location of the peaks in Table 4 are stable.
Different values of M and of spectral resolution in
plotting produce the expected changes: larger M
leads to a smoother spectrum, with broader band-
width and smaller peaks. The changes, however, are
quite small; the largest observed change in the lo-
_ cation of a peak, for mstance is 0.3% when M was
doubled.

The smaller, broader peaks in Fig. 5, which appear
as undulations between those peaks identified as kf,,
are probably produced by the “side lobes™ of the
Bartlett spectral window (Jenkins and Watts, 1968,
Fig. 6.11). They could be eliminated by a more care-
ful selection of the window (ibid., Table 6.5 and Figs.
6.12, 6.13) or of the sampling interval. Such “window
carpentry” did not seem necessary in our application,
since the main features of the spectra, namely their
quasi-periodic or aperiodic character, are already
evident in Figs. 5a-f.

REFERENCES

Alexander, R. C., and R. L. Mobley, 1974: Monthly Average Sea-
Surface Temperatures and Ice-Pack Limits on a 1° Global
Grid. Rep. R-1310-ARPA, Rand Corp., Santa Monica, 30
pp. [NTIS AD A008575].

Benzi, R., G. Parisi, A. Sutera and A. Vulpiani, 1982: Stochastic
resonance in climatic change. Tellus, 34, 10-16..

Berry, F. A. Jr., E. Bollay and N. R. Beers, Eds., 1945: Handbook
of Meteorology. McGraw-Hill, 1068 pp.

Bhattacharya, K., and M. Ghil, 1978: An energy-balance model
with multiple-periodic and quasi-chaotic free oscillations.
Evolution of Planetary Atmospheres and Climatology of the
Earth, Centre National d’Etudes Spatiales, Toulouse, 299~
310.

—, 1979: 4 3tudy of almost-intransitivity as a possible cause -

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 39

of terrestrial climate changes. Ph.D. thesis, Columbia Uni-
versity, 161 pp. .

Birchfield, G. E., and J. Weertman, 1978: A note on the spectral
response of a model continental ice sheet. J. Geophys. Res.,
83C, 4123-4125.

Blackman, R. B, and J. W. Tukey, 1958: The Measurement of
Power Spectra from the Point of View of Communications
Engineering. Dover, 190 pp.

Budyko, M. 1., 1972: The future climate. Trans. Amer Geophys.
Union, 53 868-874.

Cahalan, R. F., and G. R. North, 1979: A stability theorem for
energy-balance climate models. J. Atmos. Sci., 36, 1178-
1188.

Cess, R. D., 1976: Climate change: An appraisal of atmospheric
feedback mechanisms employing zonal climatology. J. Atmos.
Sci., 33, 1831-1843,

——, 1978: Biosphere-albedo feedback and climate modeling. J.
Atmos. Sci., 35, 1765-1768.

CLIMAP Project Members, 1976: The surface of the ice-age
earth. Science, 191, 1131-1137.

Collatz, L., 1960: The Numerical Treatment of Differential Equa-
tions, 3rd ed. Springer-Verlag, 568 pp.

Courant, R., and D. Hilbert, 1953: Methods of Mathematical
Physics, Vol. 1. Wiley-Interscience, 559 pp.

Crafoord, C., and E. Ki:llén, 1978: A note on the condition for
existence of more than one steady-state solution in Budyko-
Sellers type models. J. Atmos. Sci., 35, 1123-1125.

Dansgaard, W., S. J. Johnsen, H. B. Clausen and C. C. Langway,
Jr., 1971: Climatic record revealed by Camp-Century ice-
core. The Late Cenozoic Glacial Ages, K. Turekian, Ed., Yale
University Press, 267-306.

Driver, R. D., 1977: Ordinary and Delay Differential Equations.
Appl. Math. Sci., Vol. 20, Springer-Verlag, 501 pp.

Duplessy, J. C., G. Delibrias, J. L. Turon, C. Pujol and J. Duprat,
1981: Deglacial warming of the northeastern Atlantic Ocean.
Correlation with the paleo-climatic evolution of the European
continent. Paleogeogr., Paleoclim., Paleoecol., 35, 121-144.

Farmer, J. D., 1982: Chaotic attractors of an infinite dimensional
dynamical system. Physica, 4D, 366-393.

Fraedrich, K., 1978: Structural and stochastic analysis of a zero-
dlmensmnal climate system. Quart. J. Roy. Meteor Soc., 104,
461-474.

Gal-Chen, T., and S. H. Schneider, 1976: Energy balance climate
modeling: Comparison of radiative and dynamic feedback
mechanisms. Tellus, 28, 108-121.

Gates, W. L., and A. B. Nelson, 1975: A New (revised) Tabulation
of the Scripps Topography on a 1° Global Grid. Part II:
Océan Depths. Rep. R-1277-1-ARPA, Rand Corp., Santa
Monica, 132 pp. [NTIS AD A017567). )

Ghil, M., 1976: Climate stability for a Sellers-type model. J. At-
mos. Sci., 33, 3-20.

——, 1981a: Energy-balance models: An introduction. Climatic
Varlatzons and Variability: Facts and Theories, A. Berger,
Ed., D. Reidel, 461-480.

——, 1981b: Internal climatic mechanisms participating in gla-
ciation cycles. Climate Variations and Variability: Facts and
Theories, A. Berger, Ed., D. Reidel, 539-557.

——, and K. Bhattacharya, 1979: An energy-balance model of
glaciation cycles. Report of the JOC Study Conference on
Climate Models: Performance, Intercomparison and Sensi-
tivity Studies, GARP Publ. Ser., No. 22, WMO/ICSU 886-
916.

, and H. Le Treut, 1981: A climate model with cryodynamics

and geodynamics. J. Geophys. Res., 86C, 5262-5270.

Goldstein, H., 1980: Classical Mechanics. Addison-Wesley, 672

Pp-

Gollub, J. P, and S. V. Benson, 1980: Many routes to turbulent
convection. J. Fluid Mech., 100, 449-470.

Goody, R., 1980: Polar processes and world climate (a brief over-
v1ew) Mon. Wea. Rev., 108, 1935-1942,

Graham, R,, and H. J. Scholz, 1980: Analytic approximation of



AUGUST 1982

the Lorenz attractor by invariant manifolds. Phys. Rev., A22,
1198-1204.

Hale, J., 1971: Functional Differential Equations. Springer-Ver-
lag, 238 pp.

——, 1977: Theory of Functional Differential Equations. Appl.
Math. Sci., Vol. 3, Springer-Verlag, 365 pp.

Hannan, E. J., 1960: Time Series Analysis. Methuen and Barnes
and Noble, 152 pp.

Hasselmann, K., 1976: Stochastic climate models 1. Theory. Tel-
lus, 28, 473-485.

Hays, J. D., J. Imbrie and N. J. Shackleton, 1976: Variations in
the Earth’s orbit: Pacemaker of the ice ages. Science, 194,
1121-1132.

Held, 1. M., and M. J. Suarez, 1974: Simple albedo feedback
models of the ice caps. Tellus, 26, 613-629.

Imbrie, J., and K. P. Imbrie, 1979: Ice Ages: Solving the Mystery.
Enslow Publ., Short Hills, NJ, 224 pp.

Isaacson, E., and H. B. Keller, 1966: Analysis of Numerical
Methods. Wiley, 541 pp.

Jacobowitz, H., W. L. Smith, H. B. Howell, F. W. Nagle and
J. R. Hickey, 1979: The first 18 months of planetary radiation
budget measurements from the Nimbus 6 ERB experiment.
J. Atmos. Sci., 36, 501-507.

Jenkins, G. M., and D. G. Watts, 1968: Spectral Analysis and
its Applications. Holden-Day, 525 pp.

Killén, E., C. Crafoord and M. Ghil, 1979: Free oscillations in
a climate model with ice-sheet dynamics. J. Atmos. Sci., 36,
2292-2303.

Keller, H. B., 1968: Numerical Methods for Two-Point Boundary
Value Problems Blaisdell, 184 pp.

Kominz, M. A, G. R. Heath, T. L. Ku and N. G. Pisias, 1979:
Brunhes time scales and the interpretation of climatic change.
Earth Planet. Sci. Lett., 45, 394-410.

Kutzbach, J. E,, and R. A. Bryson 1974: Variance spectrum of
Holocene cllmatlc fluctuations in the North Atlantic sector.
J. Atmos. Sci., 31, 1958-1963.

Lamb, H. H., 1955: Two-way relationship between the snow or
ice limit and 1,000-500 mb thicknesses in the overlying at-
mosphere. Quart. J. Roy. Meteor. Soc., 81, 172-189.

Leith, C. E., 1973: The standard error of time-averaged estimates
of climatic means. J. Appl. Meteor., 12, 1066-1069. :

Le Treut, H., and M. Ghil, 1982: Orbital forcing, climatic inter-
actions, and glaciation cycles. Submitted to J. Geophys. Res.

Libchaber, A., and J. Maurer, 1980: Une expérience de Rayleigh-
Bénard de géometrie réduite: multiplication, accrochage et
démultiplication de fréquences. J. Phys., 41, No. 4, C3.51-
C3.56.

Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos.
Sci., 26, 131-141.

——, 1970: Climatic change as a mathematical problem. J. Appl.
Meteor., 9, 325-329.

MacDonald, N., 1978: Time Lags in Biological Models. Springer-
Verlag, 112 pp.

Milankovitch, M., 1941: Canon of Insolation and the Ice Age
Problem. Royal Serbian Academy, Belgrade, 482 pp. [Trans-
lated l})y Israel Program for Scientific Translation, Jerusalem,
1969.

Mitchell, J. M., Jr., 1976: An overview of climatic variability and
its causal mechanisms. Quat. Res., 6, 481-493.

Monin, A. N, and I. L. Vulis, 1979: On the astronomical theory
of the earth’s climatic fluctuations. Izv. Acad. Sci. USSR,
Atmos. Oceanic Phys., No. 1.

Moser, J., 1973: Stable and Random Motions in Dynamical Sys-
tems. Princeton University Press, 198 pp.

K. BHATTACHARYA, M. GHIL AND I.

L. VULIS 1773

Namias, J., 1964: Seasonal persistence and recurrence of European
blocking during 1958-1960. Tellus, 16, 394-407.

——, 1978: Muiltiple causes of the North American abnormal
winter 1976-77. Mon. Wea. Rev., 106, 279-295.

Nicolis, C., 1982: Stochastic aspects of climatic transitions-re-
sponse to a periodic forcing. Tellus, 34, 1-9.

——, and G. Nicolis, 1981: Stochastic aspects of climatic tran-
sitions 1. Additive fluctuations. Tellus, 33, 225-234.

North, G. R., 1975: Analytical solution to a simple climate model
with diffusive heat transport. J. Atmos. Sci., 32, 1301-1307.

——, and J. A. Coakley, 1979: Differences between seasonal and
mean annual energy balance model calculations of climate
and climate sensitivity. J. Atmos. Sci., 36, 1189-1204.

——, L. Howard, D. Pollard and B. Wielicki, 1979: Variational
formulation of Budyko-Sellers climate models. J. Atmos. Sci.,
36, 255-259.

Paltridge, G. W., 1974: Global cloud cover and earth surface tem-
perature. J. Atmos. Sci., 31, 1571-1576.

Parzen, E., 1961: Mathematical considerations in the estimation
of spectra. Technometrics, 3, 167-190.

Rex, D. R., 1950a: Blocking action in the middle troposphere and
its effect upon regional climate I. An aerological study of
blocking action. Tellus, 2, 196-211.

——, 1950b: Blocking action in the middle troposphere and its
effect upon regional climate II. The climatology of blocking
action. Tellus, 2, 276-301.

Richtmyer, R. D., and K. W. Morton, 1967. Difference Methods
for Initial-Value Problems, 2nd ed. Wiley-Interscience, 405

pp-

Ruddiman, W. F., and A. Mclntyre, 1979: Warmth of the sub-
polar North Atlantic ocean during Northern Hemisphere ice-
sheet growth. Science, 204, 173-175.

——, and ——, 1981: Oceanic mechanisms for amplification of
the 23,000-year ice-volume cycle. Science, 212, 617-627.
Ruelle, D., 1980: Strange attractors. Math. Intelligencer, 3, 126-

137.

Schneider, S. H., 1972: Cloudiness as a global climatic feedback

mechanism: The effects on the radiation balance and surface

temperature of variations in cloudiness. J. Atmos. Sci., 29,

1415-1422,

, and T. Gal-Chen, 1973: Numerical experiments in climate
stability. J. Geophys. Res., 78, 6182-6194.

Schutz, C., and W. L. Gates, 1974: Global Climatic Data for
Surface, 800 mb, 400 mb: October. Rep. R-1425-ARPA,
Rand Corp., Santa Monica, 192 pp. [NTIS AD 780685).

Schwerdtfeger, W., and S. J. Kachelhoffer, 1973: The frequency
of cyclonic vortices over the ocean in relation to the extension
of the pack ice belt. Antarctic J. U.S., 8, 234.

Sellers, W. D., 1969: A global climatic model based on the energy
balance of the earth-atmosphere system. J. Appl. Meteor., 8,
392-400.

Sutera, A., 1981: Stochastic_perturbation and long-time climate
behakur Quart. J. Roy. Meteor. Soc., 107, 137-151.

Temkin, R. L., B. C. Weare and F. M. Sncll, 1975: Feedback
coupling of absorbed solar radiation by three model atmo-
spheres with clouds. J. Atmos. Sci., 32, 873-880.

Vulis, I. L., and A. S. Monin, 1979: A contribution to the as-
tronomical theory of variations of the climate of the Earth.
Izv. Acad. Sci. USSR, Atmos. Ocean. Phys., 15, 1-9.

Winston, J. S., A. Gruber, T. I. Gray, M. S. Varadove, C. L.
Earnest and L. P. Mannello, 1979. Earth-atmosphere radia-
tion budget analyses derived from NOAA satellite data, June
1974-February 1978, Vols. 1 and 2, NOAA/NESS. [NTIS
PB 80106859.].




